基于调度容量影响的并网光伏与V2G运行多目标优化
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM712

基金项目:

贵州省科技支撑计划资助项目(黔科合支撑[2022]一般015);南方电网创新项目(GZKJXM20220036)


Multi-objective optimization of grid connected photovoltaics and V2G operation based on the influence of schedulable capacity
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    大规模电动汽车(electric vehicle, EV)的无序充电行为将导致配电网系统负荷方差过大。对EV源荷两重特性的充分利用可以降低电网的负荷方差,实现绿电的高效利用,而调度容量是影响车网互动(vehicle to grid, V2G)应用的重要因素。文中采用蒙特卡洛法和小生境技术改进的多目标粒子群优化(niche-multi-objective particle swarm optimization, niche-MOPSO)算法研究基于调度容量影响的并网光伏和V2G运行多目标优化策略。结果表明,随着EV充电参与度增大,无序的EV充电负荷会导致电网侧负荷方差增大,而对用户充电成本影响较小。随着工作区EV调度容量增加,工作区EV光伏消纳率逐渐减小,负荷方差呈现先减小后增大的趋势,在调度容量为30%时负荷方差达到最小,说明合理的V2G调用有利于电网运行的稳定性。在相同调度容量的情况下,小生境技术优化后的负荷方差、负荷峰值均减小,用户充电成本减小或收益增大,且V2G价格激励机制下的收益远大于分时电价机制的收益,说明niche-MOPSO算法能够更优地得到负荷方差以及用户充电成本。

    Abstract:

    The disorderly charging of large-scale electric vehicles connected to the power grid will lead to excessive load variance in the distribution network system. Fully utilizing the dual characteristics of electric vehicles can reduce the load variance of the power grid and achieve efficient utilization of green electricity, but user scheduling capacity is an important factor affecting the application of vehicle-to-grid interaction. This article applies the Monte Carlo method and the improved multi-objective particle swarm optimization algorithm with niche technology (niche-MOPSO) to study the multi-objective optimization strategy of grid-connected photovoltaics and V2G operation based on the impact of scheduling capacity. The research results indicate that as the charging participation rate of EVs gradually increases, disordered EV charging loads will lead to an increase in grid side load variance, but the impact on users' charging costs is relatively small. With the increase in EV scheduling capacity in the work area, the photovoltaic consumption rate gradually decreases, and the load variance shows a trend of first decreasing and then increasing. When the scheduling capacity is 30%, the load variance reaches its minimum, indicating that reasonable V2G calling is beneficial to the stability of power grid operation. Under the same scheduling capacity, the niche-MOPSO algorithm reduces the load variance and peak load, and also lowers user charging costs or increases user revenues. Moreover, the revenue under the V2G price incentive mechanism is much greater than that under the time-of-use electricity price mechanism. The niche-MOPSO algorithm can effectively optimize both load variance and user charging cost.

    参考文献
    相似文献
    引证文献
引用本文

胡厚鹏,刘伟,肖艳红,杨尚,蔡曜泽,廖强强.基于调度容量影响的并网光伏与V2G运行多目标优化[J].电力工程技术,2025,44(6):123-133. HU Houpeng, LIU Wei, XIAO Yanhong, YANG Shang, CAI Yaoze, LIAO Qiangqiang. Multi-objective optimization of grid connected photovoltaics and V2G operation based on the influence of schedulable capacity[J]. Electric Power Engineering Technology,2025,44(6):123-133.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-11
  • 最后修改日期:2025-07-28
  • 在线发布日期: 2025-12-03
  • 出版日期: 2025-11-28
文章二维码