寒潮下基于智能导航的电动汽车充电网络韧性提升
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM72

基金项目:

国家自然科学基金资助项目(52277105)


Resilience enhancement sheme of electric vehicle charging networks in extremely cold weather via intelligent navigation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    寒潮引发气温骤降,易导致电动汽车(electric vehicle, EV)续航降低和充电设施故障,无法满足EV用户的充电需求,影响充电网络韧性。针对该问题,文中提出一种基于智能导航的韧性提升方案。首先,分析寒潮对EV充电网络的影响以及寒潮中EV充电桩的故障机理与级联特性,对现有数据进行分析处理,建立寒潮的级联影响模型;其次,利用图强化学习方法训练智能导航模型并利用该模型将移动应急发电机(mobile emergency generator, MEG)导航至故障充电站进行功率补偿,从供电层面实现韧性提升;然后,利用导航模型为需要充电的EV推荐合适的充电站并进行路径规划,从充电层面实现韧性提升;最后,通过算例验证寒潮中充电桩故障的主要原因是基于级联效应的负荷占比增长。文中所提协同导航方法能够在供电层面保证充电站充电功率的稳定和故障状态下的快速恢复,在充电层面降低用户的充电前等待时间,满足用户的充电需求。

    Abstract:

    Temperature declines are induced by cold waves, leading to reduced electric vehicle (EV) range and triggering failures in charging infrastructure. As a result, charging demand cannot be met, and the resilience of the EV charging networks (EVCN) is compromised. To address this issue, a resilience enhancement scheme based on intelligent navigation is proposed. The impacts of cold waves on the EVCN are comprehensively analyzed. The failure mechanisms and cascading characteristics of charging stations under cold wave conditions are investigated, and historical data are processed to establish a cascading failure model. To enhance supply-side resilience, mobile emergency generators are navigated to faulty stations for power compensation using a navigation model trained via graph reinforcement learning. In parallel, the same model is utilized to recommend suitable charging stations and optimize routing for EVs in need of charging, thereby improving resilience from the demand side. Through case studies, cascading load increases are identified as the primary cause of failures during cold waves. The proposed collaborative navigation approach ensures stable power delivery and rapid recovery under fault conditions, while reducing waiting times and fulfilling users' charging demand.

    参考文献
    相似文献
    引证文献
引用本文

王晗,汤迪霏,旷嘉庆,张明潇,王鹏.寒潮下基于智能导航的电动汽车充电网络韧性提升[J].电力工程技术,2025,44(6):73-83. WANG Han, TANG Difei, KUANG Jiaqing, ZHANG Mingxiao, WANG Peng. Resilience enhancement sheme of electric vehicle charging networks in extremely cold weather via intelligent navigation[J]. Electric Power Engineering Technology,2025,44(6):73-83.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-24
  • 最后修改日期:2025-08-05
  • 在线发布日期: 2025-12-03
  • 出版日期: 2025-11-28
文章二维码