基于GAN数据增强与改进Bi-LSTM的充电桩故障预测方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM73

基金项目:

国家自然科学基金资助项目(52077107);国家电网有限公司总部科技项目(5400-202416211A-1-1-ZN)


A fault prediction method for charging pile based on GAN data enhancement and improved Bi-LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,电动汽车发展迅猛,其充电基础设施建设加快,因此,电动汽车充电设施的可靠性与安全性成为当前研究重点。现有研究采用的数据多为完整且充足的仿真数据,面对实际数据时,往往会因为数据不足或不完整,影响预测精度。为解决上述问题,通过数据驱动,实现充电设备充电过程的故障预警。首先,进行特征选取,选择合适的数据特征。其次,对订单数据进行筛选,构建数据集,并进行归一化处理。再次,将数据集划分为训练组和测试组,训练组用于模型的训练,测试组用于判断模型训练的优劣。然后,利用生成对抗网络(generative adversarial network, GAN)对划分好的训练组进行数据增强,扩充数据规模,形成足量的新数据,并将数据输入双向长短期记忆(bi-directional long-short term memory, Bi-LSTM)网络,采用粒子群优化(particle swarm optimization, PSO)算法对初始参数进行优化,对GAN-PSO-Bi-LSTM进行多次试验,观察模型试验的结果。最后,与其他预测模型进行比较,验证表明GAN-PSO-Bi-LSTM模型的预测性能更高,能够提高充电桩的故障预测准确率。

    Abstract:

    In recent years, the rapid development of electric vehicles (EVs) has likewise led to the construction of EV charging infrastructure, so the research on charging reliability and safety of EV charging facilities has become a focus of attention. However, most of the data used in existing research are complete and sufficient simulation data, when faced with actual data, the prediction accuracy is often affected by insufficient or incomplete data. To solve these problems, a data-driven approach is used to achieve early warning of faults during the charging process of charging equipment. Firstly, feature selection is performed to select appropriate data features. Secondly, the order data is filtered, the dataset is constructed and normalized. Secondly, the dataset is divided into a training group and a test group, the training group is used for model training, and the test group is used to judge the advantages and disadvantages of model training. Then, the divided training group is augmented with generative adversarial networks (GAN) to expand the data size and form a sufficient amount of new data. Subsequently, the data are inputted into bi-directional long-short term memory (Bi-LSTM) and the initial parameters are optimized using particle swarm optimization (PSO). A number of trials are conducted to observe the results of the modeling tests. Finally, in comparison with other prediction models, it is verified that the GAN-PSO-Bi-LSTM model has higher prediction performance, which improves the fault prediction accuracy of charging piles.

    参考文献
    相似文献
    引证文献
引用本文

周秋阳,高辉,李炜卓,归耀城.基于GAN数据增强与改进Bi-LSTM的充电桩故障预测方法[J].电力工程技术,2025,44(6):49-61. ZHOU Qiuyang, GAO Hui, LI Weizhuo, GUI Yaocheng. A fault prediction method for charging pile based on GAN data enhancement and improved Bi-LSTM[J]. Electric Power Engineering Technology,2025,44(6):49-61.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-26
  • 最后修改日期:2025-07-30
  • 在线发布日期: 2025-12-03
  • 出版日期: 2025-11-28
文章二维码