面向V2G的电动汽车动态分类及多特征在线聚合方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(52077078)


Dynamic classification and multi-feature online aggregation method for electric vehicles oriented to V2G
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对车网互动(vehicle-to-grid,V2G)场景下大规模电动汽车(electric vehicle, EV)接入电网时处理速度慢、精度低等问题,提出一种基于自适应密度空间聚类(density-based spatial clustering of applications with noise, DBSCAN)算法的EV动态分类和多步马尔科夫链聚合方法。在分类阶段,利用k-dist曲线和差分k-dist曲线对DBSCAN算法进行改进,并引入增量式聚类的概念,对EV数据进行动态分类,得到不同荷电状态(state of charge,SOC)、剩余在网时长及可调控容量的多维特征EV集群。在聚合阶段,提出考虑多步状态转移的马尔科夫链理论,利用该理论对每一EV集群在线建立聚合模型,并考虑多步状态转移的情况,弥补了传统马尔科夫链无法处理多特征EV动态聚合的缺陷,从而得到更准确的聚合功率。仿真结果表明,所提出的分类方法能够快速准确地将接入电网的大规模EV划分为不同集群,并且EV集群经过聚合后其功率准确度得到显著提高,能够有效解决大规模EV入网时存在的问题。

    Abstract:

    To address the issues of slow processing speed and low accuracy when a large number of electric vehicles (EVs) are integrated into the power grid under vehicle-to-grid (V2G) scenarios, a dynamic EV classification and multi-step Markov chain aggregation method based on a density-based spatial clustering of applications with noise (DBSCAN) algorithm is proposed. In the classification phase, the DBSCAN algorithm is improved using the k-distance curve and its differential form, and the concept of incremental clustering is introduced to dynamically classify EV data, resulting in EV clusters characterized by multi-dimensional features such as state of charge (SOC), remaining connection time, and controllable capacity. In the aggregation phase, a multi-step state transition Markov chain theory is developed to construct online aggregation models for each EV cluster. This approach addresses the limitations of traditional Markov chains in handling multi-feature EV aggregation and improves the accuracy of the aggregated power output. Simulation results demonstrate that the proposed classification method can quickly and accurately partition large-scale EVs integrated into the grid into different clusters, and that the aggregation model significantly improves the accuracy of aggregate power estimation, effectively addressing the challenges associated with large-scale EV integration.

    参考文献
    相似文献
    引证文献
引用本文

余洋,钱学尧,陈晓,吕晨睿,王研.面向V2G的电动汽车动态分类及多特征在线聚合方法[J].电力工程技术,2025,44(6):37-48. YU Yang, QIAN Xueyao, CHEN Xiao, Lü Chenrui, WANG Yan. Dynamic classification and multi-feature online aggregation method for electric vehicles oriented to V2G[J]. Electric Power Engineering Technology,2025,44(6):37-48.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-28
  • 最后修改日期:2025-07-29
  • 在线发布日期: 2025-12-03
  • 出版日期: 2025-11-28
文章二维码