基于WNN与FCM的电动汽车动态充电负荷预测方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM714

基金项目:

国家自然科学基金资助项目(51877036)


Dynamic charging load prediction method of electric vehicle based on wavelet neural network and FCM
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (51877036)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着电动汽车动态无线充电(EV-DWC)技术的发展,针对目前EV-DWC负荷建模理论工作不全面的现状,以交通流量作为影响充电负荷的主要因素,以天气、典型日期、季节等因素为次要影响因素,根据路况建立负荷模型,通过电动汽车型号和状态的聚类不同对汽车分配不同的功率,完成动态充电负荷的建立。采用小波神经网络(WNN)对时序信息进行处理预测,再同误差反向传播神经网络(BPNN)相结合预测充电道路上的车流,短期车流预测精度为85%,用模糊C聚类(FCM)算法对电动汽车的充电类型以及该类型所对应的充电功率进行划分,将进入充电道路的电动汽车分为7种类型。根据各种充电类型分配相应的充电功率,完成日负荷建模。

    Abstract:

    With the development of the electric vehicle dynamic wireless charging technology, aiming at the current incomplete theoretical work of dynamic wireless charging modeling, dynamic charging load model is established according to road conditions, and different power is assigned to different vehicles through clustering of EV models and states, so as to complete the establishment of dynamic charging load. Wavelet neural network is used to process and predict the timing sequence information, and then combined with back propagation neural network to predict the traffic flow on the charging road, and the short-term traffic flow forecasting accuracy is 85%. Fuzzy C-means algorithm is used to divide the charging type of EV and the charging power corresponding to the type, and the EV entering the charging road is divided into 7 types. The corresponding charging power is allocated according to various charging types to complete the daily load modeling.

    参考文献
    相似文献
    引证文献
引用本文

张天培,王成亮,崔恒志,郑海雁,杨庆胜,卞正达.基于WNN与FCM的电动汽车动态充电负荷预测方法[J].电力工程技术,2021,40(1):167-174

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-11-28
  • 最后修改日期:2020-12-15
  • 录用日期:2020-12-31
  • 在线发布日期: 2021-02-03
  • 出版日期: 2021-01-28
文章二维码