光纤电流互感器渐变性故障时频特征辨识
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM45

基金项目:

国家重点研发计划资助项目(2021YFB2501603)


Identification of gradual failure time-frequency feature in fiber optical current transformer
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    通过时频变换方法分解光纤电流互感器(FOCT)输出信号,获取渐变故障信号特征,是故障分析的关键步骤。针对FOCT渐变性故障信号时域跨度大且劣化过程呈随机性的特点,对输出信号进行跨间隔采样,利用小波包分解算法,根据故障信号频段实现故障信号特征提取,利用相关评价指标对时域特征参数进行筛选,得到表征FOCT劣化趋势的最优特征参数。针对信号特征维度高的特点,提出主元分析法对高维特征降维处理,满足故障特征辨识快速性的需求。实验结果表明:使用6层小波包分解算法,得到64个包含不同频段信号的子序列,对比各个频带能量占比来确定互感器运行状态,能够实现有效辨识渐变性故障特征。

    Abstract:

    Decomposing the output signal of fiber optical current transformer (FOCT) with time-frequency conversion is the key step to obtain the gradual fault characteristics. Aiming at the characteristics of FOCT gradual fault signal with large time domain span and random deterioration process,the output signal is sampled across intervals,and the wavelet packet decomposition algorithm is used to extract fault signal features according to the frequency band of the fault signal. The characteristic parameters are screened to obtain the optimal characteristic parameters that characterize the FOCT degradation trend.The principal component analysis method is proposed to reduce the dimensionality of high-dimensional features,the problem of high signal feature dimensionality is solved,and the need for fast fault feature identification is met. Experiment results show that the wavelet algorithm can decompose the signal into various frequency bands and obtain 64 sub-sequences containing signals of different frequency bands. The operating status of the transformer is determined by the energy ratio of each frequency band of the wavelet signal,and the gradual fault identification is realized.

    参考文献
    相似文献
    引证文献
引用本文

王立辉,罗拓,宋亮亮,任旭超,张文鹏,赵凯.光纤电流互感器渐变性故障时频特征辨识[J].电力工程技术,2022,41(5):227-232

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-13
  • 最后修改日期:2022-06-25
  • 录用日期:2021-09-06
  • 在线发布日期: 2022-09-21
  • 出版日期: 2022-09-28
文章二维码