西南电网异步联网后的负荷预测及频率波动抑制
作者:
中图分类号:

TM712

基金项目:

国家自然科学基金资助项目(51707166)


Load forecasting and frequency fluctuation suppression under asynchronous operation of Southwest Power Grid
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    负荷波动是导致频率不稳定的重要因素,而短期负荷预测可以预估系统有功出力,有效抑制频率波动。针对西南电网异步互联后的频率波动问题,文中首先对西南地区负荷波动幅值的概率分布进行分析,并将负荷波动概率纳入负荷预测过程,提高预测精度。然后,基于西南电网的负荷概率分布特点,提出融合反向传播(BP)神经网络和支持向量回归(SVR)的新型混合算法,采用BP神经网络对负荷水平进行评估,利用所得负荷水平作为SVR训练集的选取依据,进而预测当日负荷。最后,基于实际负荷数据进行频率仿真,并与传统方法的预测结果进行对比,验证了所提模型负荷预测精度及频率波动抑制效果的优越性。

    Abstract:

    Load fluctuation is an important factor leading to frequency instability. Short-term load forecasting can predict the active power output of the system and suppress the frequency fluctuation effectively. In order to solve the problem of frequency fluctuation after asynchronous connection of Southwest Power Grid, the probability distribution of load fluctuation amplitude in Southwest China is firstly analyzed. Secondly, the load fluctuation probability is incorporated into load forecasting process to improve the forecasting accuracy. Then, based on the load probability distribution characteristics of Southwest Power Grid, a new hybrid algorithm combining back propagation (BP) neural network and support vector regression (SVR) is proposed. BP neural network is used to evaluate the load level, and the load level obtained is used as the selection basis of SVR algorithm training set to predict the load results of the day. Finally, based on the actual load data, the frequency simulation is carried out. The prediction results are compared with the traditional prediction methods without considering the load probability distribution characteristics, which verifies the superiority of the proposed model in prediction accuracy and effectiveness.

    参考文献
    [1] NIU D X,SHI H,LI J Q,et al. Research on short-term power load time series forecasting model based on BP neural network[C]//20102nd International Conference on Advanced Computer Control. Shenyang,China. IEEE,2010:509-512.
    [2] 邓晖,楼伯良,华文,等. 基于直流闭锁事故的华东电网频率特性及控制措施[J]. 广东电力,2018,31(2):76-81. DENG Hui,LOU Boliang,HUA Wen,et al. Frequency characteristic of East China Power Grid based on DC block accidents and control measures[J]. Guangdong Electric Power,2018,31(2):76-81.
    [3] 张素香,赵丙镇,王风雨,等. 海量数据下的电力负荷短期预测[J]. 中国电机工程学报,2015,35(1):37-42. ZHANG Suxiang,ZHAO Bingzhen,WANG Fengyu,et al. Short-term power load forecasting based on big data[J]. Proceedings of the CSEE,2015,35(1):37-42.
    [4] 付超,张丹,柳勇军,等. 含大规模直流送端电网的频率响应特性仿真分析[J]. 广东电力,2018,31(9):26-31. FU Chao,ZHANG Dan,LIU Yongjun,et al. Simulation analysis on frequency response characteristic of sending-end power grid with large-scale HVDC[J]. Guangdong Electric Power,2018,31(9):26-31.
    [5] 薄其滨,王晓茹,刘克天. 基于v-SVR的电力系统扰动后最低频率预测[J]. 电力自动化设备,2015,35(7):83-88. BO Qibin,WANG Xiaoru,LIU Ketian. Minimum frequency prediction based on v-SVR for post-disturbance power system[J]. Electric Power Automation Equipment,2015,35(7):83-88.
    [6] 李昭昱,艾芊,张宇帆,等. 基于attention机制的LSTM神经网络超短期负荷预测方法[J]. 供用电,2019,36(1):17-22. LI Zhaoyu,AI Qian,ZHANG Yufan,et al. A LSTM neural network method based on attention mechanism for ultra short-term load forecasting[J].Distribution & Utilization,2019,36(1):17-22.
    [7] 仉怡超,闻达,王晓茹,等. 基于深度置信网络的电力系统扰动后频率曲线预测[J]. 中国电机工程学报,2019,39(17):5095-5104,5290. ZHANG Yichao,WEN Da,WANG Xiaoru,et al. Amethod of frequency curve prediction based on deep belief network of post-disturbance power system[J]. Proceedings of the CSEE,2019,39(17):5095-5104,5290.
    [8] 仝新宇,张宇泽,张长生,等. 基于广义回归神经网络的有源配电网网供负荷预测方法[J]. 供用电,2020,37(12):40-45. TONG Xinyu,ZHANG Yuze,ZHANG Changsheng,et al. Load forecasting method of active distribution network based on generalized regression neural network[J]. Distribution & Utilization,2020,37(12):40-45.
    [9] 张涛,顾洁. 高比例可再生能源电力系统的马尔科夫短期负荷预测方法[J]. 电网技术,2018,42(4):1071-1078. ZHANG Tao,GU Jie. Markov short-term load forecasting method for power system with high proportion renewable energy[J]. Power System Technology,2018,42(4):1071-1078.
    [10] 陈卓,孙龙祥. 基于深度学习LSTM网络的短期电力负荷预测方法[J]. 电子技术,2018,47(1):39-41. CHEN Zhuo,SUN Longxiang. Short-term electrical load forecasting based on deep learning LSTM networks[J]. Electronic Technology,2018,47(1):39-41.
    [11] DUX H,TIAN F,TAN S Q. Study of power system short-term load forecast based on artificial neural network and genetic algorithm[C]//2010 International Conference on Computational Aspects of Social Networks. Taiyuan,China. IEEE,2010:725-728.
    [12] KUMAR S,HUSSAIN L,BANARJEE S,et al. Energy load forecasting using deep learning approach-LSTM and GRU in spark cluster[C]//2018 Fifth International Conference on Emerging Applications of Information Technology(EAIT). Kolkata,India. IEEE,2018:1-4.
    [13] 周若愚. 基于SVR与半监督学习的时间序列预测[D]. 西安:西安电子科技大学,2014. ZHOU Ruoyu. Time series prediction based on SVR and semi-supervised learning[D]. Xi'an:Xidian University,2014.
    [14] 吕何,孔政敏,陈培垠,等. 基于气象综合指数和加权LSSVM的短期电力负荷组合预测[J]. 电气应用,2019,38(10):42-50. LYV He,KONG Zhengmin,CHEN Peiyin,et al. Short-term electric load combination forecasting based on meteorological composite index and weighted LSSVM[J]. Electrotechnical Application,2019,38(10):42-50.
    [15] CORTES C,VAPNIK V. Support-vector networks[J]. Machine Learning,1995,20(3):273-297.
    [16] 顾凯成. 改进网格搜索的支持向量机参数优化研究及应用[D]. 兰州:兰州理工大学,2016. GU Kaicheng. Research of parameter optimization for SVM based on improved grid search and its application[D]. Lanzhou:Lanzhou University of Technology,2016.
    [17] 陈立,严正,徐潇源. 考虑复杂影响因素的上海市负荷预测研究[J]. 科技创新与应用,2019(20):46-49. CHEN Li,YAN Zheng,XU Xiaoyuan. Study on Shanghai load forecasting considering complex factors[J]. Technology Innovation and Application,2019(20):46-49.
    [18] 张新阳,李辉,保富,等. 智能配电网环境下负荷预测研究[J]. 电子测量技术,2019,42(9):121-124. ZHANG Xinyang,LI Hui,BAO Fu,et al. Study on load forecasting in the smart grid environment[J]. Electronic Measurement Technology,2019,42(9):121-124.
    [19] 包广清,林麒麟,吴国栋. 计及气象因素和日期属性的短期负荷预测研究[J]. 电气应用,2017,36(11):46-51. BAO Guangqing,LIN Qilin,WU Guodong. Short term load forecasting considering meteorological factors and date attributes[J]. Electrotechnical Application,2017,36(11):46-51.
    [20] 朱祥和. 考虑气象因素的短期负荷预测模型研究[J]. 数学的实践与认识,2018,48(3):131-143. ZHU Xianghe. Study on short-term load forecasting model considering meteorological factors[J]. Mathematics in Practice and Theory,2018,48(3):131-143.
    [21] 姚李孝,刘学琴. 基于小波分析的月度负荷组合预测[J]. 电网技术,2007,31(19):65-68. YAO Lixiao,LIU Xueqin. A wavelet analysis based combined model for monthly load forecasting[J]. Power System Techno-logy,2007,31(19):65-68.
    [22] 邢书豪,高广玲,张智晟. 基于双层随机森林算法的短期负荷预测模型[J]. 广东电力,2019,32(9):160-166. XING Shuhao,GAO Guangling,ZHANG Zhisheng. Short-term load forecasting model based on double-layer random forest algorithm[J]. Guangdong Electric Power,2019,32(9):160-166.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

罗卫华,余锐,兰强,吴京驰,王民昆,肖嵩.西南电网异步联网后的负荷预测及频率波动抑制[J].电力工程技术,2021,40(3):42-50

复制
分享
文章指标
  • 点击次数:906
  • 下载次数: 2269
  • HTML阅读次数: 2894
  • 引用次数: 0
历史
  • 收稿日期:2020-12-13
  • 最后修改日期:2021-01-29
  • 录用日期:2020-11-09
  • 在线发布日期: 2021-06-11
  • 出版日期: 2021-05-28
文章二维码