基于贝叶斯优化XGBoost的短期峰值负荷预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM933

基金项目:

西藏自治区自然科学基金资助项目(XZ2019ZRG-52(Z))


Short-term peak load forecasting based on Bayesian optimization XGBoost
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着电网结构愈发复杂,负荷的多样性与波动性显著增加,对预测模型提出了更高的泛化能力和精度要求。然而,传统算法存在易过拟合、精度低等固有缺陷,难以实现复杂电网下精准的尖峰负荷预测。为此,文中提出一种基于贝叶斯优化极限梯度提升(XGBoost)的模型用于短期峰值负荷预测。首先,通过特征重要度得分进行特征提取,剔除冗余特征,确保输入-输出有较优的映射关系;然后,引入贝叶斯优化算法进行超参数调优,使XGBoost的性能达到最佳状态;最后,使用国内某市电力负荷数据对所提模型的有效性进行验证,结果表明,与其他机器学习方法相比,贝叶斯优化XGBoost具有更高的预测精度。

    Abstract:

    With the increasing complexity of integrated load structure of power grid, the diversity and volatility of the load increase significantly. Higher generalization ability and accuracy are required for the prediction model. However, the traditional algorithms have inherent defects such as easy overfitting and low accuracy, making it difficult to achieve accurate peak load forecasting under complex grids. To solve above problems, Bayesian optimized XGBoost model for short-term peak load forecasting is proposed. Firstly, the important features are screened through feature importance score to ensure better mapping relationship between input and output. Then, Bayesian optimization algorithm is introduced to determine the hyper-parameters to ensure the best state performance of XGBoost. Effectiveness of the proposed model is verified using power load data of a certain city in China. The results show that Bayesian optimized XGBoost has higher prediction accuracy compared with other machine learning methods.

    参考文献
    相似文献
    引证文献
引用本文

龚雪娇,朱瑞金,唐波.基于贝叶斯优化XGBoost的短期峰值负荷预测[J].电力工程技术,2020,39(6):76-81

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-05-03
  • 最后修改日期:2020-06-17
  • 录用日期:2020-10-12
  • 在线发布日期: 2020-12-01
  • 出版日期: 2020-11-28
文章二维码