基于BAS-BP分类器模型的电压暂降源识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM714

基金项目:

江苏省自然科学基金资助项目(SBK2020044025)


Identification of voltage sag source based on BAS-BP classifier model
Author:
Affiliation:

Fund Project:

Youth fund of Jiangsu Natural Science Foundation (No. SBK2020044025);Science and technology project of Jiangsu Electric Power Co., Ltd(J2020097);2020 Jiangsu postgraduate scientific research and Practice Innovation Program(SJCX20_0721)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高不同电压暂降扰动源的识别正确率,对电压暂降进行有效治理,提出一种利用天牛须搜索(BAS)算法和反向传播(BP)神经网络构建BAS-BP分类器模型的电压暂降源识别方法。文中应用改进S变换提取16个特征指标,组成电压暂降源识别指标体系,为消除冗余信息对分类结果的影响,利用组合赋权法筛选出9个指标作为分类器的输入量。通过BAS算法对BP神经网络的初始权值和阈值寻优,构建BAS-BP分类器模型,实现对配电网不同类型电压暂降源的识别。仿真结果表明,该分类器模型具有一定的抗噪能力与适用性,并且与常规分类器模型相比,具有更好的分类效果。

    Abstract:

    In order to improve the recognition accuracy of different voltage sag disturbance sources and effectively control the voltage sag, a method of voltage sag source identification based on beetle antennae search (BAS)-back propagation (BP) classifier model constructed by longicorn BAS and BP neural network is proposed. In this paper, the improved S-transform is used to extract 16 characteristic indicators to form a voltage sag source identification indicator system. In order to eliminate the influence of redundant information on the classification results, 9 indicators are selected as the input of the classifier using the combination weighting method. By optimizing the initial weights and thresholds of BP neural network by BAS, the BAS-BP classifier model is constructed to identify different types of voltage sag sources in distribution network. The simulation results show that the classifier model has certain anti-noise ability and applicability, and has a better classification than the conventional classifier model dose.

    参考文献
    相似文献
    引证文献
引用本文

叶筱怡,刘海涛,吕干云,郝思鹏.基于BAS-BP分类器模型的电压暂降源识别[J].电力工程技术,2022,41(1):77-83

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-08-18
  • 最后修改日期:2021-10-23
  • 录用日期:2020-12-11
  • 在线发布日期: 2022-01-27
  • 出版日期: 2022-01-28
文章二维码