基于非侵入式负荷辨识的聚合负荷需求响应能力在线评估
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM73

基金项目:

国家自然科学基金资助项目(51607155)


Online aggregation monitoring of low-voltage power load demand response capability based on non-intrusive load identification
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    用户侧负荷资源数量众多、容量不均、分布零散、响应潜力强,具备参与电网调节的能力。基于负荷功率、电流等特征差异,建立负荷特征指纹库,提出面向居民电器的基于多元高斯模型的非侵入式低压负荷构成辨识方法,实现居民用能的在线分解。基于同类电器特征相似的特点,获取底层居民负荷动作和可中断类型后,在同一台区下,提出由下至上的台区负荷需求响应能力在线聚合监测方法,实现台区负荷资源参与需求响应的能力评估。基于REDD数据集和台区拓扑的测试表明,该方法对居民负荷具有较高的辨识度,可较好地监测台区负荷资源参与需求响应的能力,为负荷侧海量泛在资源的整合及参与系统调峰、调频等智慧化利用提供了方式和途径。

    Abstract:

    The user side has a large number of load resources. The load has uneven capacity, scattered distribution, strong response potential and the ability to participate in grid regulation. Based on the difference in characteristics of power and current during load operation, a fingerprint database of load characteristics is established, and a non-invasive low-voltage load composition identification method for residential appliances based on a multivariate Gaussian model is proposed to achieve online decomposition of residential energy use. Based on the similar characteristics of similar electrical appliances, after obtaining the load actions and interruptible types of the bottom residents, an online aggregation monitoring method for the load demand response capability of the platform area from the bottom to the top is proposed. The REDD data set and the topology of a certain station area are used to test. The results show that the method has a better recognition of the residential load, and can better monitor the capacity of load resources participating in demand response. The method explores a way for participating in the intelligent utilization of system peak shaving and frequency modulation.

    参考文献
    相似文献
    引证文献
引用本文

张潼,于鹤洋,田江,樊海锋,陈昶宇,耿光超.基于非侵入式负荷辨识的聚合负荷需求响应能力在线评估[J].电力工程技术,2020,39(6):19-25,65

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-05-20
  • 最后修改日期:2020-06-29
  • 录用日期:2020-06-05
  • 在线发布日期: 2020-12-01
  • 出版日期: 2020-11-28
文章二维码