基于改进机器学习的输电线路弧垂温度估计方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM75

基金项目:

国家重点研发计划资助项目(2018YFB0905000)


Sag and temperature estimation method based on improved machine learning for transmission line
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对采空区地质塌陷造成的杆塔倾斜、线缆断裂以及现有输电线路弧垂和温度监测过于依赖传感器等问题,提出基于改进机器学习的输电线路弧垂温度估计方法。首先,利用安装在线路上的智能摄影机和传感器获得线路的弧垂温度图像数据。然后,基于远程无线通信传输至数据采集与监视控制系统(SCADA),基于遗传-支持向量机(GA-SVM)算法估计输电线路的弧垂,采用GA-Elman神经网络算法估计输电线路的温度,准确跟踪输电线路状态。最后通过搭建仿真平台对所提方法进行分析验证,实验结果表明所提方法能够快速获取复杂环境下的监测数据,并且弧垂温度估计准确率高于对比方法。

    Abstract:

    Aiming at the problems of tower inclination,cable fracture caused by geological collapse in goaf,and the existing transmission line sag and temperature monitoring rely too much on sensors,a transmission line sag temperature estimation method based on improved machine learning is proposed. Firstly,the sag temperature image data of the line is obtained by using the intelligent camera and sensor installed on the line. Secondly,the data is transmitted to the supervisory control and data acquisition (SCADA) based on remote wireless communication. The sag of the transmission line is estimated based on genetic support vector machine (GA-SVM) algorithm,while the temperature of the transmission line is estimated by genetic Elman (GA-Elman) neural network algorithm to accurately track the state of the transmission line. Finally,the simulation platform is built to analyze and verify the proposed method. The experimental results show that the proposed method can quickly obtain the monitoring data in complex environment. The accuracy of sag temperature estimation is better than the comparison methods.

    参考文献
    相似文献
    引证文献
引用本文

宰红斌,吴浩林,王昊,王凯.基于改进机器学习的输电线路弧垂温度估计方法[J].电力工程技术,2022,41(2):209-214

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-09-19
  • 最后修改日期:2021-12-15
  • 录用日期:2020-11-19
  • 在线发布日期: 2022-03-24
  • 出版日期: 2022-03-28
文章二维码