基于自编码网络的局部放电信号特征提取与识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM591

基金项目:

国家电网有限公司科技项目“基于多源大数据融合分析的GIS设备状态检测与异常诊断技术研究”


Feature extraction and recognition of partial discharge signal based on self-encoding network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    气体绝缘金属封闭开关设备(GIS)的状态影响电力系统运行的可靠性,而局部放电是设备潜伏性绝缘故障的重要表现之一。传统局部放电模式识别方法依赖专家经验选取局部放电特征,主观性强且不确定度高。针对这一问题,文中提出将深度学习技术引入局部放电模式识别领域,运用卷积神经网络及其扩展自编码网络提取局部放电信号特征,充分发挥自编码网络的特征抽取能力。同时,将所提取的特征与经典分类器进行衔接,有机结合传统机器学习方法与深度学习方法,实现局部放电信号的基本参数提取、统计特征计算与放电类型识别。实验结果表明,文中所提方法提取的特征相较传统的人工特征可明显提高局部放电的分类准确率和分类效率,具有广阔的工程应用前景。

    Abstract:

    The status of gas insulated switchgear (GIS) determines the reliability of power equipment operation. Partial discharge is one of the important manifestations for various early-stage latent insulation failures. The traditional partial discharge pattern recognition method relies on expert experience to select the features. The tradtional methed has the disadvantages of strong subjectivity and high uncertainty. To solve this problem, deep learning technology is introduced into the field of partial discharge pattern recognition, which uses convolutional neural network and its extended self-encoding network to extract the characteristics of partial discharge signals and gives full play to the feature extraction ability of self-encoding network. Features are connected with classical classifiers, realizing the organic combination of traditional machine learning method and deep learning method. The basic parameters extraction, statistical feature calculation and discharge type identification of partial discharge signals are realized. The experimental results show that the features extracted by the proposed method significantly improve the classification accuracy and efficiency of partial discharge compared with the traditional artificial features, which has broad engineering application prospects.

    参考文献
    相似文献
    引证文献
引用本文

李玉杰,田阳普,赵科,刘成宝,王林杰,毛恒.基于自编码网络的局部放电信号特征提取与识别[J].电力工程技术,2021,40(3):148-152

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-11-08
  • 最后修改日期:2020-12-13
  • 录用日期:2020-08-14
  • 在线发布日期: 2021-06-11
  • 出版日期: 2021-05-28
文章二维码