新能源全消纳并网友好型虚拟发电厂优化调度研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM74

基金项目:

国家自然科学基金资助项目(61761049)


Optimal dispatching of virtual power plant with new energy power generation full consumption and friendly integration into power grids
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (Program No.61761049)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    虚拟发电厂利用智能测量、网络通信、智能决策等先进技术,将分布式发电整合为一个整体向电网供电,有望成为大规模新能源电力接入的支撑框架。文中所构建的虚拟发电厂以其并网经济效益最大化为目标,同时考虑新能源出力的不确定性给电网带来的不利影响,通过引入波动因子参数和奖惩机制来限制其并网功率的波动性。在此基础上,以储能系统和可中断负荷为调度资源,对新能源发电进行全部消纳。最后,在相关约束条件限制下采用粒子群算法进行寻优。算例结果表明,该方法能在全部消纳新能源发电的基础上,有效抑制虚拟发电厂的并网功率波动性,极大提高了新能源接入的友好性。

    Abstract:

    Virtual power plants integrate distributed power generations into a whole to feed power to the grid by utilizing advanced technologies such as intelligent measurement, network communication, and intelligent decision-making, which is expected to become a supporting framework for large-scale new energy generation integrating into grids. The goal of the virtual power plant constructed is to maximize the economic benefits of grid-connection. At the same time, considering the adverse effects of the uncertainty of new energy output on the power grid, fluctuation factor parameters and mechanism for reward or punishment are introduced to limit the fluctuation of grid-connection power. On this basis, the energy storage system and interruptible load are used as scheduling resources to consume the new energy power generation completely. Finally, the particle swarm algorithm is used for optimizing under the constraints. The calculation results show that the method can effectively suppress the fluctuation of the grid-connected power virtual power plant on the basis of consuming all the new energy generation, and greatly improve the friendliness of new energy access.

    参考文献
    相似文献
    引证文献
引用本文

徐天奇,田业,高鑫,李红坤,李琰.新能源全消纳并网友好型虚拟发电厂优化调度研究[J].电力工程技术,2021,40(2):33-38

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-09-12
  • 最后修改日期:2020-10-23
  • 录用日期:2020-05-04
  • 在线发布日期: 2021-04-02
  • 出版日期: 2021-03-28
文章二维码