基于多新息最小二乘算法的电力线路参数辨识
作者:
基金项目:

国家重点研发计划资助项目(2018YFB0904500)


Power line parameter identification based on multi-innovation least square algorithm
Author:
Fund Project:

the National Key Research and Development Program of China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    随着电力系统的建设和发展,电网结构日益复杂,由于线路长期运行、周围环境变化等原因导致原有的线路参数模型与实际线路参数存在偏差,从而影响电力系统的实时监控和优化运行。考虑到电力系统输电线路中的数据采集与监控(SCADA)系统量测充足,提出基于多新息最小二乘(MILS)算法的线路参数辨识模型,实现全网线路的准确辨识和校正。首先,利用实时数字仿真(RTDS)系统搭建IEEE 39节点电力系统仿真模型,获得潮流运行数据;然后,在Matlab中进行参数辨识,将辨识结果与RTDS中的线路参数进行对比。结果表明,基于MILS算法的参数辨识结果具有较高估计精度,可作为电力系统可疑线路判断依据。

    Abstract:

    With the construction and development of power system, the structure of power grid is becoming more and more complex. Due to the long-term operation of power lines and changes in the surrounding environment, deviations exist between the original line parameters model and the actual line parameters, which affect the real-time monitoring and optimal operation of power system. Considering the sufficient measurement of data acquisition and monitoring system(SCADA) in power system transmission lines, a line parameter identification model is presented based on multi-innovation least squares(MILS) algorithm in order to achieve accurate identification and correction of the whole network lines. IEEE 39-bus power system simulation model is built on real-time digital simulation(RTDS) platform to obtain power flow operation data. Then, parameter identification is carried out in Matlab environment, and the identification results are compared with the line parameters on RTDS platform. The results show that the parameters identification results based on MILS algorithm have high estimation accuracy, and can be used as the basis for judging suspicious lines in power system.

    参考文献
    [1] 万黎升, 李予辰, 曹洋. 泛在电力物联网下基于调控云的线路状态感知监测及数据共享研究[J]. 电力信息与通信技术, 2019, 17(11):32-37. WAN Lisheng, LI Yuchen, CAO Yang. Research on transmission line state-aware monitoring and data sharing based on dispatching and control cloud under ubiquitous power internet of things[J]. Electric Power Information and Communication Technology, 2019, 17(11):32-37.
    [2] 颜伟, 赵雪骞, 陈俊, 等. 电网设备错误参数的支路量测标幺值残差代数和均值辨识法[J]. 电力自动化设备, 2013, 33(2):99-103. YAN Wei, ZHAO Xueqian, CHEN Jun, et al. Grid equipment parameter error identification based on mean algebraic sum of branch measurement normalized residuals[J]. Electric Power Automation Equipment, 2013, 33(2):99-103.
    [3] 王茂海, 鲍捷, 齐霞, 等. 基于PMU实测数据的输电线路参数在线估计方法[J]. 电力系统自动化, 2010, 34(1):25-27, 31. WANG Maohai, BAO Jie, QI Xia, et al. Online estimation of transmission line parameters based oil PMU measurements[J]. Automation of Electric Power Systems, 2010, 34(1):25-27, 31.
    [4] 丁蓝. 基于PMU的输电线路参数辨识与戴维南等值研究[D]. 北京:华北电力大学, 2012. DING Lan. Study on parameter identification of transmission line and Thevenin equivalent based on PMU[D]. Beijing:North China Electric Power University, 2012.
    [5] 段玉飞, 王伟. 基于物联网的输电线路智能监测系统研究与应用[J]. 电力信息与通信技术, 2019, 17(7):21-28. DUAN Yufei, WANG Wei. Research and application of intelligent monitoring system for transmission line based on internet of things[J]. Electric Power Information and Communication Technology, 2019, 17(7):21-28.
    [6] 梁振锋, 张晓阳, 张惠智, 等. 基于故障录波数据的故障线路参数计算[J]. 智慧电力, 2018, 46(8):39-44. LIANG Zhenfeng, ZHANG Xiaoyang, ZHANG Huizhi, et al. Fault line parameters calculation based on fault recording data[J]. Smart Power, 2018, 46(8):39-44.
    [7] 李澄, 鲍有理, 黄瑜, 等. 不受线路参数变化影响的故障测距原理研究[J]. 江苏电机工程, 2016, 35(5):67-70. LI Chen, BAO Youli, HUANG Yu, et al. Research on fault location unaffected by parameters for transmission lines[J]. Jiangsu Electrical Engineering, 2016, 35(5):67-70.
    [8] 王顺江, 孙乔, 侯验秋, 等. 基于状态估计及综合可疑度的参数辨识和修正方法[J]. 中国电力, 2020, 53(2):36-42. WANG Shunjiang, SUN Qiao, HOU Yanqiu, et al. The identification and correction method of grid parameters based on the state estimation and comprehensive suspicious index[J]. Electric Power, 2020, 53(2):36-42.
    [9] 颜全椿, 郑明忠, 梁伟. 计及距离空间的电网参数误差支路选取方法[J]. 江苏电机工程, 2015, 34(5):25-28, 33. YAN Quanchun, ZHENG Mingzhong, LIANG Wei. Analysis of the power material apportionment involved in protocol based on inventory model[J]. Jiangsu Electrical Engineering, 2015, 34(5):25-28, 33.
    [10] ZHAO J, FLISCOUNAKIS S, PANCIATICI P, et al. Robust parameter estimation of the french power system using field data[J]. IEEE Transactions on Smart Grid, 2019, 10(5):5334-5344.
    [11] 施佳锋. 基于SCADA遥测数据的线路参数辨识系统的研究[D]. 北京:华北电力大学, 2015. SHI Jiafeng. Research on line identification system base on SCADA telemetry data[D]. Beijing:North China Electric Power University, 2015.
    [12] 宋晓燕, 孙岩洲, 宋紫嫣, 等. 基于零序PT二次侧注入信号的配电网电容电流测量新方法[J]. 电力系统保护与控制, 2014, 42(19):134-138. SONG Xiaoyan, SUN Yanzhou, SONG Ziyan, et al. A new method of distribution network capacitive current measurement based on injecting signals into the secondary side of the zero sequence PT[J]. Power System Protection and Control, 2014, 42(19):134-138.
    [13] 毕天姝, 丁蓝, 张道农. 基于窗口滑动总体最小二乘法的输电线路参数辨识[J]. 电力科学与技术学报, 2011, 26(2):10-15. BI Tianshu, DING Lan, ZHANG Daonong. Transmission line parameters identification based on moving window TLS[J]. Journal of Electric Power Science and Technology, 2011, 26(2):10-15.
    [14] 戴长春, 王正风, 张兆阳, 等. 基于IGG准则的抗差最小二乘输电线路参数辨识[J]. 现代电力, 2014, 31(2):37-41. DAI Changchun, WANG Zhengfeng, ZHANG Zhaoyang, et al. Robust least square estimation for transmission line parameter identification based on IGG criterion[J]. Modern Electric Power, 2014, 31(2):37-41.
    [15] 陈俊. 基于多时段量测的电网设备参数辨识与估计方法研究[D]. 重庆:重庆大学, 2011. CHEN Jun. Research on method of grid equipment parameter identification and estimation based on multi-period measurement[D]. Chongqing:Chongqing University, 2011.
    [16] 丁峰.系统辨识:多新息辨识理论与方法[M]. 北京:科学出版社, 2016. DING Feng.System identification:multi-innovation identifica-tion theory and method[M]. Beijing:Science Press, 2016.
    [17] 寇攀高, 周建中, 肖剑, 等. 基于多新息最小二乘法的同步发电机一次性抛载试验参数辨识[J]. 电网技术, 2013, 37(2):378-384. KOU Pangao, ZHOU Jianzhong, XIAO Jian, et al. Multi-innovation least square algorithm-based parameter identification for synchronous generator by once-only load rejection test[J]. Power System Technology, 2013, 37(2):378-384.
    [18] 索江镭, 胡志坚, 刘宇凯, 等. 基于多新息耦合最小二乘算法的电力系统状态空间辨识[J]. 电力自动化设备, 2015, 35(7):65-73. SUO Jianglei, HU Zhijian, LIU Yukai, et al. Power system state space identification based on multi-innovation coupling least square algorithm[J]. Electric Power Automation Equipment, 2015, 35(7):65-73.
    [19] 苏蓉, 赵俊博, 张葛祥, 等. 一种计及全量测相关性的混合电力系统状态估计方法[J]. 电网技术, 2018, 42(8):2651-2658. SU Rong, ZHAO Junbo, ZHANG Gexiang, et al. A hybrid power system state estimation method considering measurement corralations[J]. Power System Technology, 2018, 42(8):2651-2658.
    [20] 薛安成, 徐飞阳, 游宏宇, 等. 基于微型PMU的配电线路抗差参数辨识[J]. 电力自动化设备, 2019, 39(2):1-7, 43. XUE Ancheng, XU Feiyang, YOU Hongyu, et al. Intelligent harmonious collocation for reactive power compensation of distribution network combining planning and operation[J]. Electric Power Automation Equipment, 2019, 39(2):1-7, 43.
    [21] 张秀丽, 黄旭, 杨德亮, 等. 基于正交投影与多新息RLS的PMSM参数辨识[J]. 电力系统保护与控制, 2018, 46(14):33-39. ZHANG Xiuli, HUANG Xu, YANG Deliang, et al. Identification of PMSM based on orthogonal projection and multi-innovation RLS combined algorithm[J]. Power System Protection and Control, 2018, 46(14):33-39.
    [22] 刘芳芳, 任晓明. 基于多新息最小二乘算法的非线性系统辨识[J]. 自动化仪表, 2019, 40(9):26-29. LIU Fangfang, REN Xiaoming. Nonlinear system identification based on multi-innovation least squares algorithm[J]. Process Automation Instrumentation, 2019, 40(9):26-29.
    相似文献
    引证文献
引用本文

原康康,卫志农,段方维,刘芮彤,徐伟,严明辉.基于多新息最小二乘算法的电力线路参数辨识[J].电力工程技术,2020,39(4):55-60

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-01-16
  • 最后修改日期:2020-03-05
  • 录用日期:2019-12-14
  • 在线发布日期: 2020-08-03
  • 出版日期: 2020-07-28
文章二维码