基于多新息最小二乘算法的电力线路参数辨识
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划资助项目(2018YFB0904500)


Power line parameter identification based on multi-innovation least square algorithm
Author:
Affiliation:

Fund Project:

the National Key Research and Development Program of China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着电力系统的建设和发展,电网结构日益复杂,由于线路长期运行、周围环境变化等原因导致原有的线路参数模型与实际线路参数存在偏差,从而影响电力系统的实时监控和优化运行。考虑到电力系统输电线路中的数据采集与监控(SCADA)系统量测充足,提出基于多新息最小二乘(MILS)算法的线路参数辨识模型,实现全网线路的准确辨识和校正。首先,利用实时数字仿真(RTDS)系统搭建IEEE 39节点电力系统仿真模型,获得潮流运行数据;然后,在Matlab中进行参数辨识,将辨识结果与RTDS中的线路参数进行对比。结果表明,基于MILS算法的参数辨识结果具有较高估计精度,可作为电力系统可疑线路判断依据。

    Abstract:

    With the construction and development of power system, the structure of power grid is becoming more and more complex. Due to the long-term operation of power lines and changes in the surrounding environment, deviations exist between the original line parameters model and the actual line parameters, which affect the real-time monitoring and optimal operation of power system. Considering the sufficient measurement of data acquisition and monitoring system(SCADA) in power system transmission lines, a line parameter identification model is presented based on multi-innovation least squares(MILS) algorithm in order to achieve accurate identification and correction of the whole network lines. IEEE 39-bus power system simulation model is built on real-time digital simulation(RTDS) platform to obtain power flow operation data. Then, parameter identification is carried out in Matlab environment, and the identification results are compared with the line parameters on RTDS platform. The results show that the parameters identification results based on MILS algorithm have high estimation accuracy, and can be used as the basis for judging suspicious lines in power system.

    参考文献
    相似文献
    引证文献
引用本文

原康康,卫志农,段方维,刘芮彤,徐伟,严明辉.基于多新息最小二乘算法的电力线路参数辨识[J].电力工程技术,2020,39(4):55-60

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-01-16
  • 最后修改日期:2020-03-05
  • 录用日期:2019-12-14
  • 在线发布日期: 2020-08-03
  • 出版日期: 2020-07-28
文章二维码