基于深度置信网络的双馈风机变换器开路故障诊断
作者:
中图分类号:

TM464

基金项目:

国家电网有限公司总部科技项目(SGJSDK00JLJS1900400)


Open-switch fault diagnosis of converters of doubly-fed induction generator-based wind turbine using deep belief networks
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    双馈风机的定子与电网直接连接,转子通过转子侧变换器和网侧变换器与电网进行功率交换。变换器的电力电子开关容易发生开路故障,影响双馈风机的安全稳定运行。文中针对双馈风机常见的变换器开路故障,提出一种基于深度置信网络的故障诊断方法。首先分析了双馈风机在转子侧变换器和网侧变换器的单个和双个开关管故障下的输出响应。基于双馈风机的变换器开路故障数据,构造多层受限玻尔兹曼机结构,充分利用深度置信网络优异的模式识别能力,深度提取不同故障条件和运行工况下转子电流和网侧电流的信号特征,提高算法准确度。仿真结果表明,该故障诊断方法能够准确识别单开关和双开关的多类型复杂故障。

    Abstract:

    The stator of doubly-fed induction generator-based wind turbine (DFIG-WT) is directly connected to the power grid, and the rotor of DFIG-WT system exchanges power with main grid via a back-to-back converter. The power electronic switches of back-to-back converter are prone to open-switch fault, which affects the stable operation of the system. A deep belief network (DBN) based fault diagnosis method for the open-switch faults of converters of DFIG-WT system is present in this paper. Firstly, the output response of DFIG-WT system with single and double switch faults of rotor-side converter (RSC) and grid-side converter (GSC) is analyzed. Based on the open-switch fault data of DFIG-WT, multilayer restricted Boltzmann machines (RBMs) are constructed to extract the deep information of rotor currents and grid currents under various fault and operation conditions, which fully takes advantage of excellent pattern recognition ability of DBN to improve the fault diagnosis accuracy. The simulation results indicate that the proposed DBN based fault diagnosis method is able to precisely detect the single and double open-switch faults of DFIG-WT system.

    参考文献
    [1] 赵洪山,程亮亮. 基于双线性观测器的双馈风电机组变流器功率管开路故障诊断[J]. 电力自动化设备,2017,37(3):72-79. ZHAO Hongshan,CHENG Liangliang. Open-circuit fault diagnosis based on bilinear observer for converter power-switch of doubly-fed wind turbine[J]. Electric Power Automation Equipment,2017,37(3):72-79.
    [2] 靳现林,蔡晓宇,刘其辉,等. 一种考虑RSC和GSC的双馈风机短路电流实用计算方法[J]. 电力系统保护与控制,2019,47(24):23-30. JIN Xianlin,CAI Xiaoyu,LIU Qihui,et al. A practical calculation method for short-circuit current of DFIG considering RSC and GSC[J]. Power System Protection and Control,2019,47(24):23-30.
    [3] 于淼,汤亚芳,黄亦欣,等. 双馈风机控制方式对继电保护影响的研究[J]. 电力系统保护与控制,2020,48(2):180-187. YU Miao,TANG Yafang,HUANG Yixin,et al. Research on the influence of control mode of DFIG on relay protection[J]. Power System Protection and Control,2020,48(2):180-187.
    [4] RIBRANT J,BERTLING L. Survey of failures in wind power systems with focus on Swedish wind power plants during 1997-2005[J]. IEEE Transactions on Energy Conversion,2007,22(1):167-173.
    [5] CAMPOS-DELGADO D U,ESPINOZA-TREJO D R. An observer-based diagnosis scheme for single and simultaneous open-switch faults in induction motor drives[J]. IEEE Transactions on Industrial Electronics,2011,58(2):671-679.
    [6] ESPINOZA-TREJO D R,CAMPOS-DELGADO D U,BOSSIO G,et al. Fault diagnosis scheme for open-circuit faults in field-oriented control induction motor drives[J]. IET Power Electronics,2013,6(5):869-877.
    [7] POON J,JAIN P,KONSTANTAKOPOULOS I C,et al. Model-based fault detection and identification for switching power converters[J]. IEEE Transactions on Power Electronics,2017,32(2):1419-1430.
    [8] JUNG S M,PARK J S,KIM H W,et al. An MRAS-based diagnosis of open-circuit fault in PWM voltage-source inverters for PM synchronous motor drive systems[J]. IEEE Transactions on Power Electronics,2013,28(5):2514-2526.
    [9] GAN C,WU J,YANG S,et al. Fault diagnosis scheme for open-circuit faults in switchedreluctance motor drives using fast Fourier transform algorithm with bus current detection[J]. IET Power Electronics,2016,9(1):20-30.
    [10] 沈艳霞,周文晶,纪志成,等. 基于小波包分析的风力发电系统中变流器的故障识别[J]. 电网技术,2013,37(7):2011-2017. SHEN Yanxia,ZHOU Wenjing,JI Zhicheng,et al. Fault identification of converter used in wind power generation based on wavelet packet analysis[J]. Power System Technology,2013, 37(7):2011-2017.
    [11] 黄科元,刘静佳,黄守道,等. 永磁直驱系统变流器开路故障诊断方法[J]. 电工技术学报,2013,37(7):2011-2017. HUANG Keyuan,LIU Jingjia,HUANG Shoudao,et al. Converters open-circuit fault-diagnosis methods research for direct-driven permanent magnet wind power system[J]. Transactions of China Electrotechnical Society,2013,37(7):2011-2017.
    [12] DUAN P,XIE K,ZHANG L,et al. Open-switch fault diagnosis and system reconfiguration of doubly fed wind power converter used in a microgrid[J]. IEEE Transactions on Power Electronics,2011,26(3):816-821.
    [13] 张海霞,谭阳红,周野. 风力发电系统变流器故障诊断[J]. 电机与控制学报,2015,19(9):89-94. ZHANG Haixia,TAN Yanghong,ZHOU Ye. Fault diagnoses of converter in wind turbine system[J]. Electric Machines and Control,2015,19(9):89-94.
    [14] CHEN W,BAZZI A M. Logic-based methods for intelligent fault diagnosis and recovery in power electronics[J]. IEEE Transactions on Power Electronics,2017,32(7):5573-5589.
    [15] CHEN Z,LI C,SANCHEZ R V. Multi-layer neural network with deep belief network for gearbox fault diagnosis[J]. Journal of Vibro-engineering,2015,17(5):2379-2392.
    [16] FENG D,XIAO M,LIU Y,et al. Finite-sensor fault-diagnosis simulation study of gas turbine engine using information entropy and deep belief networks[J]. Frontiers of Information Technology & Electronic Engineering,2016,17(12):1287-1304.
    [17] 姜有泉,黄良,王波,等. 基于DGA和深度置信网络的变压器内部故障诊断[J]. 武汉大学学报(工学版),2017,50(5):749-753. JIANG Youquan,HUANG Liang,WANG Bo,et al. Transformer internal fault diagnosis based on DGA and deep belief network[J]. Engineering Journal of Wuahn University,2017,50(5):749-753.
    [18] 徐春华,陈克绪,马建,等. 基于深度置信网络的电力负荷识别[J]. 电工技术学报,2019,34(19):4135-4142. XU Chunhua,CHEN Kexu,MA Jian,et al. Recognition of power loads based on deep belief network[J]. Transactions of China Electrotechnical Society,2019,34(19):4135-4142.
    [19] ODGAARD P F,STOUSTRUP J. A benchmark evaluation of fault tolerant wind turbine control concepts[J]. IEEE Transac-tions on Control Systems Technology,2014,23(3):1221-1228.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

夏候凯顺,李波.基于深度置信网络的双馈风机变换器开路故障诊断[J].电力工程技术,2021,40(1):188-194

复制
分享
文章指标
  • 点击次数:662
  • 下载次数: 1597
  • HTML阅读次数: 2008
  • 引用次数: 0
历史
  • 收稿日期:2020-08-05
  • 最后修改日期:2020-09-12
  • 录用日期:2020-03-02
  • 在线发布日期: 2021-02-03
  • 出版日期: 2021-01-28
文章二维码