基于EKF算法的分布式光伏发电异常数据排查技术
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM92

基金项目:

国家电网有限公司科技项目 (B3680117111400ZR000000);安徽省科技重大专项(17030901061)


Abnormal data inspection technology of photovoltaic power generation based on EKF algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    分布式光伏发电运营过程中,设备故障、仪表测量误差、用户个人行为等干扰因素会导致运营系统采集异常数据,因此对异常数据进行排查,有助于保障光伏发电用户数据库的准确性和可靠性,提高存在运营问题的分布式光伏用户的识别度。文中针对分布式光伏系统的特殊性,提出一种光伏发电运营系统异常数据排查技术,结合温度、辐射量、纬度、时令等环境因素,采用中心复合设计方法,通过有限的数据量建立较为精确的发电量数学模型,采用扩展卡尔曼滤波算法对采集到的发电量进行修正,从而排查和消除异常数据。该方法能预测发电数据,快速、可靠地排查异常数据,实验结果验证了该方法的有效性。

    Abstract:

    During the operation of distributed photovoltaic power generation, abnormal data collected by the operating system would be caused by interference factors, such as equipment failure, meter measurement error, user personal behavior and so on.Therefore troubleshooting abnormal data helps to ensure the accuracy and reliability of the PV generation user database and identify distributed PV users with operational problems.For the above reasons, an abnormal data inspection technology for photovoltaic power generation operation system is proposed.Environmental factors such as temperature, radiation, latitude, and seasonality are taken into consideration.The mathematical model of power generation is established by the central composite design method.The accumulated power generation is corrected by the extended Kalman filter(EKF) algorithm.Thus abnormal data can be checked and eliminated.The proposed method can realize the prediction of power generation data.It can check abnormal data quickly and reliably.The principle of investigation and the specific implementation process are discussed.Finally the effectiveness of the proposed technique is proved by experimental results.

    参考文献
    相似文献
    引证文献
引用本文

左松林,陈伟,付真斌,赵骞,江再玉,郑昕昕.基于EKF算法的分布式光伏发电异常数据排查技术[J].电力工程技术,2020,39(5):120-125

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-03-13
  • 最后修改日期:2020-04-21
  • 录用日期:2020-03-05
  • 在线发布日期: 2020-09-30
  • 出版日期: 2020-09-28
文章二维码