基于PSO-SVM的智能变电站二次系统故障诊断方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM714

基金项目:

四川省科技计划资助项目(19YYJC0681)


Fault diagnosis method for secondary system of smart substation based on PSO-SVM
Author:
Affiliation:

Fund Project:

Sichuan Science and Technology Program

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为充分利用智能变电站的站端信息,帮助运维人员更加快速准确地定位智能变电站二次系统的故障,从而保证电力系统的安全稳定运行,文中提出一种基于多分类支持向量机(SVM)的智能变电站二次系统故障诊断方法,并采用粒子群优化(PSO)算法对参数进行自动寻优,根据智能变电站长期运行的历史状态数据和检修人员处理结果构建专家数据库。智能变电站二次系统的原始信号为大量{0, 1}形式的状态量,采用开关量编码形式定义数据组,并使用主成分分析法对信号进行数据降维,最终构建了基于站端信息的智能变电站二次系统故障诊断模型。对比诊断模型与专家人工判断对实际故障的诊断结果,可知文中所提出的方法具有较好的准确性与适用性。

    Abstract:

    In order to make full use of the information of the intelligent substation, help the operation and maintenance personnel to locate the faults of the secondary system of the intelligent substation more quickly and accurately, so as to ensure the safe and stable operation of the power system, a fault diagnosis method for secondary system of intelligent substation based on multi classification support vector machine(SVM) is proposed, and particle swarm optimization(PSO) algorithm is used to optimize the parameters automatically. The expert database is built according to the historical state data of the long-term operation of the intelligent substation and the processing results of the maintenance personnel. The original signal of the secondary system of the intelligent substation is a large number of {0, 1} state variables. The data group is defined in the form of switching value coding, and the data dimension of the signal is reduced by using the principal component analysis method. Finally, the fault diagnosis model of the secondary system of the intelligent substation based on the information of the terminal is constructed. The results of the comparison between the diagnosis model and the expert manual judgment show that the method proposed has excellent accuracy and applicability.

    参考文献
    相似文献
    引证文献
引用本文

袁明哲,邹经鑫,汪艮,李雪恺,卫佳奇.基于PSO-SVM的智能变电站二次系统故障诊断方法[J].电力工程技术,2020,39(6):172-176,190

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-05-03
  • 最后修改日期:2020-06-18
  • 录用日期:2020-01-15
  • 在线发布日期: 2020-12-01
  • 出版日期: 2020-11-28
文章二维码