含风电和电动汽车的VPP现货市场投标鲁棒优化模型
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM73

基金项目:

中国南方电网有限责任公司科技项目(ZBKJXM20170075)


Spot market bidding strategy for virtual power plants with wind power and electric vehicles
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当风力发电商(WPG)和电动汽车(EV)聚合商组成的虚拟电场(VPP)参与市场投标时,风电出力的不确定性、预测出力偏差以及市场价格的波动性,都是VPP在参与市场投标时需要考虑的因素。在计及上述因素的影响下,文中研究了由WPG和EV聚合商组成的VPP在日前市场和实时市场的联合竞价模型:假定VPP是价格的接受者,综合考虑日前和实时价格的不确定性,在日前市场中根据风电出力和市场价格的预测结果进行日前竞价,然后在实时市场上参与实时竞价。VPP不但可以通过EV充放电平抑WPG投标偏差,还可以根据价格信号进行充放电投标,实现削峰填谷。通过引入偏差考核机制,在日前和实时市场结束后进行统一结算。基于合作博弈理论,利用Shapley值法将总收益在WPG和EV之间根据各自的贡献进行合理分配。最后,通过算例验证了模型的可行性和有效性,结果表明VPP参与日前和实时市场可以增加收益,降低出力和价格不确定性带来的风险,为新能源参与现货市场的建设提供参考。

    Abstract:

    For virtual power plants(VPP) composed of wind power generation(WPG) and electric vehicles(EV), uncertainty of wind power output, deviation between wind power forecast and actual output, randomness of EV and the volatility of market prices need to be considered when participating in market bidding. Considering above factors, two stage bidding model for VPP to participate day-ahead and real-time market is proposed. VPP can not only reduce the bidding deviation of wind power through EV charging and discharging, but also make bidding strategies according to the price signal to realize peak clipping and valley filling. Based on cooperative game theory, the Shapley method is used to reasonably distribute the total profit between WPG and EV according to their respective contributions. Finally, feasibility and effectiveness of proposed model are verified by an example. The results show that VPP can increase the profit and reduce the risk caused by output and price uncertainty, and provide reference for the construction of new energy participation in the spot market.

    参考文献
    相似文献
    引证文献
引用本文

宋艺航,王秀丽,匡熠,王刚,朱宗耀,陈先龙.含风电和电动汽车的VPP现货市场投标鲁棒优化模型[J].电力工程技术,2020,39(3):120-127

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-11-19
  • 最后修改日期:2019-12-22
  • 录用日期:2020-02-24
  • 在线发布日期: 2020-06-08
  • 出版日期: 2020-05-28
文章二维码