基于泛在电力物联网的换流站在线监测系统优化综述
作者:
中图分类号:

TM734


Optimization survey of online monitoring system for converter station based on ubiquitous power IoT
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为解决当前换流站在线监测系统在运行中存在的可靠性、安全性以及误告警频发等问题,文中基于泛在电力物联网技术对系统进行优化重构。首先,通过构建平台层,将系统接入物联管理平台以及数据中台,实现数据的融通共享,减轻云端存储压力,提升服务响应。其次,设计基于边缘计算的物联智能终端,实现站内设备的安全接入和泛在物联,该装置作为边缘计算节点通过集成深度学习算法,实现站端数据的采集存储、计算分析与异常识别,提高了告警的准确性和系统运行的可靠性。因此,基于泛在电力物联网的换流站在线监测系统架构优化为后续工程实践提供了一种新的建设应用模式。

    Abstract:

    In order to solve the problems of reliability, safety and frequent false alarms in the current operation of the online monitoring system of converter station, a system based on the ubiquitous power IoT advanced technology is reconstructed in this paper.By constructing the platform layer, the system is connected to the IoT management platform and the enterprise mid-station, which realizes the fusion sharing of DC device operation data, reduces the cloud data storage pressure and improves the system service response.Secondly, the intelligent terminal based on the edge computing framework to realize the safe access and ubiquitous connection of various online monitoring devices is designed.The device is deployed as an edge computing node, integrating the algorithm of deep learning to realize the station-side data acquisition, storage, analysis and anomaly identification, which improves the accuracy of the alarm and system operation reliability.Therefore, the optimization of the online monitoring system architecture of the converter station based on the ubiquitous power IoT provides a typical application model for subsequent engineering practice.

    参考文献
    [1] 熊浩,孙才新,廖瑞金,等.基于核可能性聚类算法和油中溶解气体分析的电力变压器故障诊断研究[J].中国电机工程学报,2005,25(20):162-166. XIONG Hao,SUN Caixin,LIAO Ruijin,et al.Study on Kernel-based possibilistic clustering and dissolved gas analysis for fault diagnosis of power transformer[J].Proceedings of the CSEE,2005,25(20):162-166.
    [2] 齐波,张鹏,徐茹枝,等.基于分布模型的变压器差异化预警值计算方法[J].高电压技术,2016, 42(7):2290-2298. QI Bo, ZHANG Peng,XU Ruzhi, et al.Calculation method on differentiated warning value of power transformer based on distribution model[J].High Voltage Engineering, 2016, 42(7):2290-2298.
    [3] 严英杰,盛戈皞,刘亚东, 等.基于滑动窗口和聚类算法的变压器状态异常检测[J].高电压技术, 2016, 32(12):4020-4025. YAN Yingjie, SHENG Gehao, LIU Yadong, et al.Anomalous state detection of power transformer based on algorithm sliding windows and clustering[J].High Voltage Engineering, 2016, 32(12):4020-4025.
    [4] 荣智海,齐波,张鹏, 等.基于油中溶解气体Canopy高维模型的变压器异常状态快速识别方法[J].中国电机工程学报, 2018, 38(13):3987-3996. RONG Zhihai, QI Bo, ZHANG Peng, et al.Anomalous state detection of dissolved gases in transformer oil based on the canopy hyper sphere model[J].Proceedings of the CSEE, 2018, 38(13):3987-3996.
    [5] 寇伟.守正创新,担当作为,奋力开创世界一流能源互联网企业建设新局面[R/OL].(2019-01-20)[2019-07-01].http://www.sgcc.com.cn/html/sgcc_main/col2017021230/2019-01/17/20190117230510074872247_1.shtml. KOU Wei.Keeping in good faith and taking responsibility as a new situation in building a world-class energy Internet enterprise [R/OL].(2019-01-20)[2019-07-01].http://www.sgcc.com.cn/html/sgcc_main/col2017021230/2019-01/17/20190117230510074872247_1.shtml.
    [6] 国家电网公司生产技术部.输变电设备状态监测系统技术导则:Q/GDW 561—2010[S].北京:中国电力出版社,2010. State Grid Corporation Production Technology Department.Technical guide for power transmission and transformation equipment condition monitoring system:Q/GDW 561—2010[S].Beijing: China Electric Power Press, 2010.
    [7] 赵诣,侯英洒,曹文东.边缘计算在超高压变电站综自系统中的应用探究[J].电力大数据,2019, 22(3):44-48. ZHAO Yi, HOU Yingsa, CAO Wendong.Study on application of edge computing in EHV substation SCADA system[J].Power System and Big Data, 2019, 22(3):44-48.
    [8] 杨挺, 翟峰, 赵英杰, 等.泛在电力物联网释义与研究展望[J].电力系统及其自动化, 2019, 43(13):9-18. YANG Ting, ZHAI Feng, ZHAO Yingjie, et al.Interpretation and research prospect of ubiquitous power internet of things[J].Automation of Electric Power Systems, 2019, 43(13):9-18.
    [9] 工业互联网产业联盟.边缘计算参考架构2.0[J].自动化博览, 2018(2):54-56. Industrial Internet Industry Alliance.Edgecomputing reference architecture 2.0 [J].Automation Expo, 2018(2): 54-56.
    [10] 谢玮,夏水斌,何行, 等.基于边缘计算的电力末端融合系统的优化[J].电测与仪表, 2019, 56(16):61-66. XIE Wei, XIA Shuibin, HE Xing, et al.Optimization of power end fusion system based on edge computation[J].Electrical Measurement & Instrumentation,2019, 56(16):61-66.
    [11] 江秀臣,刘亚东,傅晓飞,等.输配电设备泛在电力物联网建设思路与发展趋势[J].高电压技术,2019, 45(5):1345-1351. JIANG Xiuchen, LIU Yadong, FU Xiaofei, et al.Construction ideas and development trends of transmission and distribution equipment of the ubiquitous power internet of things[J].High Voltage Engineering, 2019, 45(5):1345-1351.
    [12] 刘建明,赵子岩,季翔.物联网技术在电力输配电系统中的研究与应用[J].物联网学报,2018(1):88-102. LIU Jianming,ZHAO Ziyan,JI Xiang.Research and application of internet of things in power transmission and distribution system[J].Chinese Journal on Internet of Things,2018(1):88-102.
    [13] 国网互联网部.泛在电力物联网建设大纲[EB/OL].(2019-03-10)[2019-07-01].https://baijiahao.baidu.com/s?id=1627631245232851888& wfr=spider& for=pc. State Grid Internet Department.Ubiquitous power internet of things construction outline[EB/OL].(2019-03-10)[2019-07-01].https://baijiahao.baidu.com/s?id=1627631245232851888& wfr=spider& for=pc.
    [14] BU Fanyu, WANG Xin.A smart agriculture IoT system based on deep reinforcement learning[J].Future Generation Computer Systems, 2019, 99:500-507.
    [15] 王洪勉,孙慧,郑利斌,等.泛在电力物联网智联单元设计与实现[J].供用电,2019,36(6):5-9,28. WANG Hongmian, SUN Hui, ZHENG Libin, et al.Design and implementation of wisdom unit in the ubiquitous internet of things in Electricity [J].Distribution & Utilization,2019,36(6):5-9,28.
    [16] 蔡月明,封士永,杜红卫,等.面向泛在电力物联网的边缘节点感知自适应数据处理方法[J].高电压技术,2019,45(6):1715-1722. CAI Yueming, FENG Shiyong, DU Hongwei, et al.Novel edge-ware adaptive data processing method for the ubiquitous electric power internet of things[J].High Voltage Engineering, 2019,45(6):1715-1722.
    [17] 黄云程,高阿娜,王翌,等.变压器油色谱在线监测数据甄别与清洗技术[J].电力科学与工程, 2019, 35(6):37-43. HUANG Yuncheng, GAO Ana, WANG Yi, et al.Screening and cleaning technology of transformer oil chromatographic on-line monitoring data[J].Electric Power Science and Engineering, 2019, 35(6):37-43.
    [18] 苗莉.边缘计算环境下安全防御模型及算法研究[D].北京:北京科技大学,2019. MIAO Li.Research on security defence model and algorithm in edge computing[D].Beijing: Beijing University of Science and Technology, 2019.
    [19] 葛畅, 白光伟, 沈航, 等.基于边缘计算的视频监控框架[J].计算机工程与设计, 2019, 40(1):32-39. GE Chang, BAI Guangwei, SHEN Hang, et al.Edge computing based video surveillance framework[J].Computer Engineering and Design,2019, 40(1):32-39.
    [20] 肖云飞.基于边缘计算和深度学习的车道保持系统设计与实现[D].南京:南京大学,2018. XIAO Yunfei.The design and implementation of lane-keeping system based on edge computing and deep learning[D].Nanjing: Nanjing University, 2018.
    [21] ZHAO Xianlong, YANG Kexin, CHEN Qimei, e t al.Deep le-arning based mobile data offloading in mobile edge computing systems[J].Future Generation Computer Systems, 2019, 99:346-355.
    [22] 华为技术有限公司.物联网安全技术白皮书(2018版):安全架构的不断演进[R/OL].(2018-10-23)[2019-07-01].https://www.huawei.com/minisite/iot/img/iot_security_white_paper_2018_v2_cn.pdf. Huawei Technologies Co., Ltd.IoTsecurity technology white paper (2018 Edition): the evolution of security architecture[R/OL].(2018-10-23)[2019-07-01].https://www.huawei.com/minisite/iot/img/iot_security_white_paper_2018_v2_cn.pdf.
    [23] 张佳乐, 赵彦超, 陈兵, 等.边缘计算数据安全与隐私保护研究综述[J].通信学报, 2018, 39 (3):1-21. ZHANG Jiale, ZHAO Yanchao, CHEN Bing, et al.Survey on data security and privacy-preserving for the research of edge computing[J].Journal on Communications, 2018, 39 (3):1-21.
    [24] 殷树刚,许勇刚,李祉岐,等.基于泛在电力物联网的全场景网络安全防护体系研究[J].供用电,2019,36(6):83-89. YIN Shugang,XU Yonggang,LI Zhiqi,et al.Research on full-scenario network security protection system adapted to the ubiquitous internet of things in electricity[J].Distribution & Utilization,2019,36(6):83-89.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吕继伟.基于泛在电力物联网的换流站在线监测系统优化综述[J].电力工程技术,2019,38(6):9-15

复制
分享
文章指标
  • 点击次数:1766
  • 下载次数: 2396
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2019-05-29
  • 最后修改日期:2019-07-01
  • 录用日期:2019-10-21
  • 在线发布日期: 2019-11-28
  • 出版日期: 2019-11-28
文章二维码