实时电价下源网荷各侧收益的优化研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM715

基金项目:

国家自然科学基金资助项目(51877181)


Optimization of profits on source network load under real-time electricity price
Author:
Affiliation:

Fund Project:

The National Natural Science Foundation of China(51877181)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于用户在峰谷分时电价中的响应机制和价格弹性理论,用户会随着电价的变化调整自身用电量,因此通过电价变化引导用户主动地调整用电计划,从而达到缩小负荷曲线峰谷差,降低源网荷各侧成本以及增加收益的目的。文中采用模糊聚类算法对日负荷进行峰平谷分类,根据各小时的峰平谷隶属度建立实时电价模型,并且依据新电改之后相关政策对电源侧和电网侧的收益建立数学模型,以电源侧和电网侧收益最大、峰谷差最小为目标函数,将以负荷侧用户用电成本不上涨为约束条件的源网荷各侧收益作为优化模型,采用粒子群算法进行求解,并在Matlab仿真平台上验证了该模型缩小峰谷差和增加收益的有效性。

    Abstract:

    Based on the user′s response mechanism and price elasticity theory in the peak-to-valley time-of-use price, the user will adjust the power consumption with the change of the electricity price. Therefore, the user will voluntarily adjust the power consumption plan through the electricity price change, thereby reducing the load curve. The peak-valleydifference reduces the cost of each side of "source", "grid"and "load" and increases the income. In this paper, the fuzzy clustering algorithm is used to classify the daily load, and the real-time electricity price model is established according to the peak-middle-valley membership degree of each hour. Based on the relevant policies after the new electricchange, the mathematical model of the power supply side and the grid side is established. The "source", "grid", and "load" sides of the revenue are the optimization model with the largest gain on the grid side and the minimum peak-valley difference as the objective functions, and the load side user electricity cost does not rise as the constraint. The particle swarm optimization algorithm is used. Solve and verify the model′s narrow peak-valley difference and increase the effectiveness of the gain on the Matlab simulation platform.

    参考文献
    相似文献
    引证文献
引用本文

苑吉河,冯德伦,张曦,杨阳,朱金龙.实时电价下源网荷各侧收益的优化研究[J].电力工程技术,2019,38(4):92-98

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-02-27
  • 最后修改日期:2019-04-18
  • 录用日期:2019-05-15
  • 在线发布日期: 2019-08-01
  • 出版日期: 2019-07-28
文章二维码