基于主导轨迹断面阻尼比灵敏度的仿真关键参数诊断
作者:
基金项目:

国家电网有限公司总部科技项目“大电网仿真收敛性能诊断方法研究”


Simulation parameter diagnosis based on the dominant trajectory section damping ratio sensitivity
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    电力系统机电暂态仿真中,励磁、调速、电力系统稳定器(PSS)等控制系统参数不合理,易引起控制系统稳定性弱化,导致仿真可信度降低。基于轨迹断面阻尼比灵敏度指标,提出一种机电暂态仿真中控制系统关键参数的实用诊断方法。由仿真中各控制系统的输出变量振荡特性确定主导断面时刻、主导发电机及其对应控制系统,针对主导断面时刻和主导发电机进行单机无穷大(OMIB)等值后,经阻尼比灵敏度分析给出参数调整建议,多个算例验证了所提方法的有效性。该法是轨迹特征根思想的一种工程应用,结合数值积分提供的控制系统振荡信息与平衡点特征根技术提供的阻尼比灵敏度解析信息,可快速定位不合理的控制系统参数,适用于复杂多机系统的参数诊断。

    Abstract:

    Unreasonable excitation, speed regulation, PSS and other control system parameters in electromechanical transient simulation of power system will lead to the weakening of control system stability and the reduction of simulation credibility. A practical diagnostic method for this problem is presented based on the dominant trajectory section damping ratio sensitivity. The dominant time section, the dominant generator and its corresponding control system are determined automatically by the output variable oscillation characteristics of each control system in the simulation. After the single-machine infinite (OMIB) equivalent is performed for the dominant time section and the dominant generator, the suggestion of parameter adjustment is given by the sensitivity analysis of damping ratio. The effectiveness of the proposed method is verified by several examples. This method is an engineering application of the idea of trajectory eigenvalue. In combination with the oscillation information of the control system provided by numerical integration and the damping ratio sensitivity analytical information provided by eigenvalue technology, unreasonable control system parameters can be quickly located. It is suitable for parameter diagnosis of complex multi-machine system.

    参考文献
    [1] 李兆伟, 吴雪莲, 庄侃沁, 等. "9·19"锦苏直流双极闭锁事故华东电网频率特性分析及思考[J]. 电力系统自动化,2017, 41(7):149-155. LI Zhaowei, WU Xuelian, ZHUANG Kanqin, et al. Analysis and reflection on frequency characterisics of east china grid after bipolar locking of 9.19 Jinping-Sunan DC transmission line[J]. Automation of Electric Power Systems, 2017, 41(7):149-155.
    [2] 张俊峰, 李鹏, 苏寅生, 等. 励磁系统调差系数优化整定存在的风险分析[J]. 电力系统自动化, 2015, 39(20):141-145. ZHANG Junfeng, LI Peng, SU Yinsheng, et al. Risk analysis on optimization and setting for system reactive current compensation[J]. Automation of Electric Power Systems, 2015, 39(20):141-145.
    [3] 徐春雷, 徐瑞, 仇晨光, 等. 发电机组一次调频在线测试与AGC性能考核系统设计[J]. 电力工程技术, 2017, 36(3):1-6. XU Chunlei, XU Rui, QIU Chenguang, et al. Evaluation system design of online test of primary frequency regulation and AGC performance for generator unit[J]. Electric Power Engineering Technology, 2017, 36(3):1-6.
    [4] VAN NESSJE, BOYLEJM, IMADFP. Sensitivity of large multiple-loop systems[J]. IEEE Transactions on Automatic Control, 1965, 10(7):308-315.
    [5] 史慧杰, 陈陈, 陈迅, 等. 基于灵敏度分析的电力系统稳定器参数优化[J]. 电力系统自动化, 2012, 36(17):15-19. SHI Huijie, CHEN Chen, CHEN Xun, et al. Power system stabilizer parameters optimization based on sensitivity analysis[J]. Automation of Electric Power Systems, 2012, 36(17):15-19.
    [6] LAUFENBERG M J, PAI M A. A new approach to dynamic security assessment using trajectory sensitivities[J]. IEEE Transactions on Power Systems, 1998, 13(3):953-958.
    [7] HISKENS I A, PAI M A. Trajectory sensitivity analysis of hybrid systems[J]. IEEE Transactions on Circuits and Systems, 2000, 47(2):204-220.
    [8] 周保荣, 房大中, 孙景强. 基于轨迹灵敏度分析的电力系统稳定器参数优化设计[J]. 电网技术, 2004, 28(19):20-23. ZHOU Baorong, FANG Dazhong, SUN Jingqiang. Tuning of PSS parameters using optimization approach based on trajectory sensitivity analysis[J]. Power System Technology, 2004, 28(19):20-23.
    [9] 马进, 王景钢, 贺仁睦. 电力系统动态仿真的灵敏度分析[J]. 电力系统自动化, 2005, 29(17):20-27. MA Jin, WANG Jinggang, HE Renmu. Sensitivity analysis of power system dynamic simulation[J]. Automation of Electric Power Systems, 2005, 29(17):20-27.
    [10] 周海强, 张琦兵, 顾康慧. 基于轨迹灵敏度的动态等值模型参数分类优化方法[J]. 电力建设, 2015, 36(8):29-33. ZHOU Haiqiang, ZHANG Qibing, GU Kanghui.A trajetory sensitivity-based dynamic equivalent model parameters optimization method[J]. Electric Power Construction, 2015, 36(8):29-33.
    [11] 左煜, 李欣然, 宋军英. 应用暂态稳定测度指标的参数灵敏度分析方法[J]. 电力系统及其自动化学报, 2016, 28(12):77-82. ZUO Yu, LI Xinran, SONG Junying. Method for parameter sensitivity analysis of the transient stability measurement index application[J]. Proceedings of the CSU-EPSA, 2016, 28(12):77-82.
    [12] 刘兴杰, 闫亮. 基于轨迹灵敏度的励磁系统参数可辨识性分析[J]. 电力系统自动化, 2019, 43(1):209-214. LIU Xingjie, YAN Liang. Parameter identifiability analysis of excitation system based on trajectory sensitivity[J]. Automation of Electric Power Systems, 2019, 43(1):209-214.
    [13] 张鹏飞, 薛禹胜, 张启平. 电力系统时变振荡特性的小波脊分析[J]. 电力系统自动化, 2004, 28(16):32-35. ZHANG Pengfei, XUE Yusheng, ZHANG Qiping. Power system time-varying oscillation analysis with wavelet ridge algorithm[J]. Automation of Electric Power Systems, 2004, 28(16):32-35.
    [14] 薛禹胜, 潘学萍, ZHANG Guorui, 等. 计及时变系统完整非线性的振荡模式分析[J]. 电力系统自动化, 2008, 32(18):1-7. XUE Yusheng, PAN Xueping, ZHANG Guorui, et al. Oscillation mode analysis including full nonlinearity of timevarying systems[J]. Automation of Electric Power Systems, 2008, 32(18):1-7.
    [15] 潘学萍, 薛禹胜, 张晓明, 等. 轨迹特征根的解析估算及其误差分析[J]. 电力系统自动化, 2008, 32(19):10-14. PAN Xueping, XUE Yusheng, ZHANG Xiaoming, et al. Analytical calculation of power system trajectory eigenvalues and its error analysis[J]. Automation of Electric Power Systems, 2008, 32(19):10-14.
    [16] 薛禹胜, 郝思鹏, 刘俊勇, 等. 关于低频振荡分析方法的评述[J]. 电力系统自动化, 2009, 33(3):1-8. XUE Yusheng, HAO Sipeng, LIU Junyong, et al. A review of analysis methods for low-frequency methods[J]. Automation of Electric Power Systems, 2009, 33(3):1-8.
    [17] 郝思鹏, 薛禹胜, 唐茂林, 等. 通过轨迹特征根分析时变振荡特性[J]. 电力系统自动化, 2009, 33(6):1-5. HAO Sipeng, XUE Yusheng, TANG Maoling, et al. Trajectory eigenvalue analysis time variant oscillation analysis[J]. Automation of Electric Power Systems, 2009, 33(6):1-5.
    [18] 尹波, 庞松龄, 杨眉. 基于阻尼灵敏度指标的PSS参数优化[J]. 电力系统保护与控制, 2011, 39(8):28-32. YIN Bo, PANG Songling, YANG Mei. Optimization of PSS parameters based on damping sensitivity indices[J]. Power System Protection and Control, 2011, 39(8):28-32.
    [19] KUNDUR P.Power system stability and control[M]. McGraw-Hill, 1993.
    [20] 徐伟, 鲍颜红, 徐泰山, 等. 电力系统低频振荡实时控制[J]. 电力自动化设备, 2012, 32(5):98-101. XU Wei, BAO Yanhong, XU Taishan, et al. Real-time control of power system low-frequency oscillation[J]. Electric Power Automation Equipment, 2012, 32(5):98-101.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李峰,彭慧敏,李威,袁虎玲,鲍颜红.基于主导轨迹断面阻尼比灵敏度的仿真关键参数诊断[J].电力工程技术,2019,38(3):67-73

复制
分享
文章指标
  • 点击次数:1280
  • 下载次数: 2193
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2018-12-13
  • 最后修改日期:2019-01-18
  • 录用日期:2019-03-22
  • 在线发布日期: 2019-06-03
  • 出版日期: 2019-05-28
文章二维码