一种基于图形处理器加速的批量LU分解算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学青年基金资助项目(51607093)


A GPU-accelerated algorithm of batch-LU decomposition
Author:
Affiliation:

Fund Project:

Research on Voltage and Frequency Stability Control of Active Distribution Network Based on Coordination of Multiple Electic Springs

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    潮流计算是电力系统计算的基础,其核心是LU分解计算,因此电力系统潮流计算加速的关键在于LU分解加速。当前,基于中央处理器(CPU)的并行算法已经成熟,性能提升空间有限。图形处理器(GPU)作为协处理器,在科学计算方面具有强大的优越性,被广泛应用到电力系统潮流计算中。文中首先分析了GPU结构和并行运行架构,然后介绍了LU分解原理,并选择了合适的矩阵排序算法和稀疏矩阵存储模型,借助统一计算设备架构(CUDA)编程模型实现了基于GPU的单个LU分解和批量LU分解并行加速,最后在仿真设备上测试了5个不同的案例,对比分析其并行算法的加速效果。仿真测试结果表明,基于GPU的批量稀疏LU分解并行算法,平均可以获得25~50倍的加速效果。

    Abstract:

    Power flow calculation is the basis of power system calculation, and its core is LU decomposition calculation. Therefore, the key to power system power flow calculation acceleration is LU decomposition acceleration. Currently, parallel algorithms based on central processing units (CPU) have matured and limited space for performance improvement. As a coprocessor, the graphics processor (GPU) has powerful advantages in scientific computing and is widely used in power system power flow calculation. This paper first analyzes the GPU structure and parallel operation architecture, then introduces the LU decomposition principle, and selects the appropriate matrix sorting algorithm and sparse matrix storage model. The GPU-based single LU decomposition is realized by the unified computing device architecture (CUDA) programming model. Parallel acceleration with batch LU decomposition. Finally, five different cases were tested on the simulation device, and the acceleration effect of the parallel algorithm was compared and analyzed. The simulation test results show that the GPU-based batch sparse LU decomposition parallel algorithm can obtain an acceleration effect of 25~50 times on average.

    参考文献
    相似文献
    引证文献
引用本文

李梦月,王颖,马刚,周赣.一种基于图形处理器加速的批量LU分解算法[J].电力工程技术,2019,38(2):57-63

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-11-07
  • 最后修改日期:2018-12-11
  • 录用日期:2019-02-13
  • 在线发布日期: 2019-03-28
  • 出版日期: 2019-03-28
文章二维码