基于WD-CS-SVM的超短期风电功率组合预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM614

基金项目:

国家自然科学基金资助项目(51607083)


Combination ultra-short-term prediction of wind power based on WD-CS-SVM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高风电场输出功率的预测精度,应用小波分析(WD)和布谷鸟优化支持向量机(CS-SVM)算法对风电功率进行超短期预测,对比于通过预测风速间接求得的风电功率更加直接且准确。首先,利用WD与重构,将风电功率模型分解成近似序列和细节序列,然后利用CS-SVM算法对每个序列进行预测,得到每个序列的预测结果,最后把各个序列的预测结果叠加,形成风电功率的最终预测值。算例计算结果表明,预测结果具有较高的精度,与SVM以及其他方法优化的SVM预测结果相比,文中使用的方法预测结果更加准确,具有较强的优越性和实用性。

    Abstract:

    In order to improve the prediction accuracy of wind farm output power, wavelet analysis(WD) and cuckoo optimization support vector machine(CS-SVM) algorithm are used to predict wind power in ultra-short term, which is more direct and accurate than indirect wind power obtained by predicting wind speed. Firstly, the wind power model is decomposed into approximate sequence and detail sequence by using wavelet decomposition and reconstruction. Then, the support vector machine optimized by cuckoo algorithm is used to predict each sequence, and the prediction results of each sequence are obtained. Finally, the prediction results of each sequence are superimposed to form the final prediction value of wind power. The results of numerical examples show that the prediction results have high accuracy, and the method used in this paper is more accurate, superior and practical than the support vector machine and other methods optimized support vector machine prediction results.

    参考文献
    相似文献
    引证文献
引用本文

刘家敏,李聪睿,周志浩,李升.基于WD-CS-SVM的超短期风电功率组合预测[J].电力工程技术,2019,38(5):24-29

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-03-04
  • 最后修改日期:2019-04-09
  • 录用日期:2019-02-11
  • 在线发布日期: 2019-09-30
  • 出版日期: 2019-09-28
文章二维码