规模化储能系统参与电网调频的控制策略研究
作者:
中图分类号:

TM712

基金项目:

国家重点研发计划资助项目(2016YFB0900500);国家电网有限公司科技项目“多点布局分布式储能系统在电网的聚合效应研究及应用示范”


Frequency regulation strategy for power grid incorporating large-scale energy storage
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    传统的火电与水电调频机组因其固有特性难以满足电力系统快速发展、新能源发电集中并网等引起的频率稳定控制需求,储能以其灵敏精准的出力特性逐步在电力系统调频领域中实现了规模化应用。针对规模化储能资源响应速度快、跟踪精度高、调节方向易改变及有限的容量等特点展开了其参与电网调频的控制策略研究:首先,建立了区域电网自动发电控制(AGC)系统及包含储能荷电状态(SOC)的储能系统仿真模型;然后,综合考虑储能资源与常规电源的发电特性,提出了计及储能SOC的快慢速调频资源协调控制策略;最后,搭建了4种不同的仿真场景,通过仿真试验对提出的控制策略的有效性进行了验证。

    Abstract:

    Traditional thermal power plants and hydro-power plants are difficult to deal with the problem of frequency stability caused by the rapid development of power system and the generation and parallelling in grid of renewable energy, while large-scale energy storage is applying itself in frequency regulation in power system for its characteristics of swiftness and accuracy. Energy storage system (ESS) has advantages of fast response speed, high following precision and easy-changing adjust direction, which has disadvantage of limit capacity, either. Considering the characteristics of ESS, control strategy of ESS participating in AGC is studied. Firstly, power grid AGC system model and ESS model including state-of-charging(SOC) is established. Then, with comprehensively considering the characteristics of ESS and conventional power resources, a coordination strategy between fast and slow regulation sources is proposed. Finally, three different scenarios is designed, and the efficiency of the proposed strategy is demonstrated through the sets of simulation tests.

    参考文献
    [1] 国家电网公司"电网新技术前景研究"项目咨询组. 大规模储能技术在电力系统中的应用前景分析[J]. 电力系统自动化,2013,37(1):3-8. Consulting Group of State Grid Corporation of China to Prospects of New Technologies in Power systems. An analysis of prospects for application of large-scale energy storage technology in power systems[J].Automation of Electric Power Systems,2013,37(1):3-8.
    [2] 程明. 新能源与分布式电源系统(下)[J]. 电力需求侧管理,2003,5(4):43-46. CHENG Ming. New energy and distributed power-supply system[J]. Power Demand Side Management,2003,5(4):43-46.
    [3] 张粒子,李丰,程世军,等. 大规模间歇式能源并网辅助服务需求研[J]. 太阳能学报,2013,34(8):1345-1352. ZHANG Lizi,LI Feng,CHENG Shijun,et al.Research on ancillary services requirements for grid-connected large-scale intermittent energy[J]. Acta Energiae Solaris Sinica,2013,34(8):1345-1352.
    [4] 邓晖,黄弘扬,楼伯良,等. 浙江多馈入交直流混联电网电压稳定性分析[J]. 浙江电力,2017,36(4):1-4. DENG Hui,HUANG Hongyang,LOU Boliang,et al. Voltage stability analysis of multi-infeed AC/DC hybrid power system in Zhejiang Province[J]. Zhejiang Electric Power, 2017, 36(4):1-4.
    [5] 张凤翱,李国平. 基于载波通信技术的低压配电网设备自动化识别系统[J]. 浙江电力,2017,36(4):60-63. ZHANG Fengao,LI Guoping. Automatic identification system of low-voltage distribution network equipment based on carrier communication technology[J]. Zhejiang Electric Power, 2017, 36(4):60-63.
    [6] 昆德.电力系统稳定与控制[M]. 北京:中国电力出版社, 2001. KUNDUR P.Power system stability and control[M]. Beijing:China Power Press,2001.
    [7] 袁小明,程时杰,文劲宇. 储能技术在解决大规模风电并网问题中的应用前景分析[J]. 电力系统自动化,2013,37(1):14-18. YUAN Xiaoming, CHENG Shijie, WEN Jinyu. Prospects analysis of energy storage application in grid integration of large-scale wind power[J]. Automation of Electric Power Systems, 2013, 37(1):14-18.
    [8] 王松岑,来小康,程时杰. 大规模储能技术在电力系统中的应用前景分析[J]. 电力系统自动化,2013,37(1):3-8. WANG Songceng, LAI Xiaokang, CHENG Shijie. An analysis of prospects for application of large-scale energy storagetechnology in power system[J]. Automation of Electric Power Systems, 2013, 37(1):3-8.
    [9] 罗星,王吉红,马钊. 储能技术综述及其在智能电网中的应用展望[J]. 智能电网,2014,2(1):7-12. LUO Xing, WANG Jihong, MA Zhao. Overview of energy storage technologies and their application prospects in smart grid[J]. Smart Grid, 2014, 2(1):7-12.
    [10] 何英静,李帆,沈舒仪,等. 新能源及分布式电源接入浙江配电网适应性研究[J]. 浙江电力,2018,37(1):32-36. HE Yingjing,LI Fan,SHEN Shuyi,et al. Adaptability research on integration of new energy and distributed generation into Zhejiang distribution networks[J]. Zhejiang Electric Power, 2018, 37(1):32-36.
    [11] 李建林, 田立亭, 来小康. 能源互联网背景下的电力储能技术展望[J]. 电力系统自动化, 2015, 39(23):15-25. LI Jianlin, TIAN Liting, LAI Xiaokang. Outlook ofelectrical energy storage technologies under energy internet background[J]. Automation of Electric Power Systems, 2015, 39(23):15-25.
    [12] LIN J, DAMATO G, HAND P. Energy storage-a cheaper, faster and cleaner alternative to conventional frequency regulation[R]. Strategen, CESA, 2011:1-15.
    [13] MAKAROV Y V, LU S, MA J, et al. Assessing the value of regulation resources based on their time response characteristics[R]. Richland, WA, USA:Pacific Northwest National Laboratory(PNNL), 2008.
    [14] LU N,WEIMAR M R,MAKAROV Y V, et al. The wide-area energy storage and management system-battery storage evaluation[J]. Injury-international Journal of the Care of the Injured, 2009, 30(6):407-415.
    [15] LU N,WEIMAR M R,MAKAROV Y V,et al. An evaluation of the flywheel potential for providing regulation service in California[C]//Power & Energy Society General Meeting. IEEE, 2010.
    [16] ZHONG Jin, HE Lina, LI Canbing, et al. Coordinated control for large-scale EV charging facilities and energy storage devices participating in frequency regulation[J]. Applied Energy, 2014, 123:253-262.
    [17] CHENG Yunzhi,TABRIZI M,SAHNI M,et al. Dynamic available AGC based approach for enhancing utility scale energy storage performance[J]. IEEE Transactions on Smart Grid,2014,5(2):1070-1078.
    [18] 任洛卿,白泽洋,于昌海,等. 风光储联合发电系统有功控制策略研究及工程应用[J]. 电力系统自动化,2014,38(7):105-111. REN Luoqing, BAI Zeyang, YU Changhai, et al. Research on active power control strategy forwind/photovoltaic/energy storage hybrid power system and its engineering application[J]. Automation of Electric Power Systems, 2014, 38(7):105-111.
    [19] 胡泽春, 谢旭, 张放, 等. 含储能资源参与的自动发电控制策略研究[J]. 中国电机工程学报, 2014, 34(29):5080 -5087.
    HU Zechun, XIE Xu, ZHANG Fang, et al. Research on automatic generation control strategy incorporating energy storage resources[J]. Proceedings of the CSEE, 2014, 34(29):5080 -5087.
    [20] 曹生允, 宋春宁, 林小峰, 等. 用于电池储能系统并网的PCS 控制策略研究[J]. 电力系统保护与控制, 2014, 42(24):93-98. CAO Shengyun, SONG Chunning, LIN Xiaofeng, et al. Study of PCS's control strategy for battery energy storage grid-connected system[J]. Power System Protection and Control, 2014, 42(24):93-98.
    [21] 常丰祺, 郑泽东, 李永东. 一种新型混合储能拓扑及其功率分流算法[J]. 电工技术学报, 2015, 30(12):128-135. CHANG Fengqi, ZHENG Zedong, LI Yongdong. A novel hybrid energy storage topology and its power sharing algorithm[J]. Transactions of China Electrotechnical Society, 2015, 30(12):128-135.
    [22] 黄际元,李欣然,曹一家,等. 面向电网调频应用的电池储能电源仿真模型[J]. 电力系统自动化, 2015, 39(18):20-24, 74. HUANG Jiyuan, LI Xinran, CAO Yijia, et al. Battery energy storage power supply simulation model for power grid frequency regulation[J]. Automation of Electric Power System, 2015, 39(18):20-24, 74.
    [23] 张斌.自动发电控制及一次调频控制系统[M]. 北京:中国电力出版社,2005. ZHANG Bin.Automatic generation control and primary frequency modulation control system[M]. Beijing:China Power Press, 2005.
    引证文献
引用本文

于昌海,吴继平,杨海晶,李朝晖,滕贤亮,涂孟夫.规模化储能系统参与电网调频的控制策略研究[J].电力工程技术,2019,38(4):68-73,105

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-01-22
  • 最后修改日期:2019-03-27
  • 录用日期:2018-11-19
  • 在线发布日期: 2019-08-01
  • 出版日期: 2019-07-28
文章二维码