一种新的电压偏差预测方法
作者:
基金项目:

上海市科委地方能力建设计划项目(16020500900)


A Method of Short-term Voltage Deviation Forecasting
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对电压偏差预测难度大的问题,文中提出一种新的电压偏差预测方法。该方法包括主成分分析法(principal component analysis,PCA)降维、亲和力传播(affinity propagation,AP)聚类、反向传播(back propagation,BP)神经网络预测3步。通过PCA对数据进行降维,获得数据主成分;为了弥补传统聚类方法的不足,提高聚类效果,文中引入AP聚类提取与待预测点同类的历史数据;最后选择BP神经网络建立电压偏差预测模型。将文中方法应用于实际电压偏差数据,结果表明该方法预测结果平均相对误差为3.06%,优于传统BP神经网络预测模型以及BP神经网络结合PCA降维的预测模型。

    Abstract:

    This paper presents an accurate model to forecast voltage deviation with improved BP neural network,which concerns with the meteorological factors.The proposed method is a combination of PCA dimension reduction,AP clustering and BP neural network.The proposed method is successfully applied to actual data and the practical application results proved that the mean absolute percentage error (MAPE) of the proposed method is 3.06%,which is obviously better than that of other methods.

    参考文献
    [1] 丁泽俊,刘平,欧阳森,等.电能质量预测与预警机制及其应用[J].电力系统及其自动化学报,2015, 27(10):87-92. DING Zejun, LIU Ping, OUYANG Sen, et al. Mechanism of power quality forecast and early warning and their application[J]. Proceedings of the CSU-EPSA, 2015, 27(10):87-92.
    [2] 胡铭,陈珩.电能质量及其分析方法综述[J].电网技术, 2000, 24(2):36-38. HU Ming, CHEN Heng. Survey of power quality and its analysis methods[J]. PowerSystem Technology, 2000, 24(2):36-38.
    [3] 廖旎焕,胡智宏,马莹莹,等.电力系统短期负荷预测方法综述[J].电力系统保护与控制, 2011, 39(1):147-152. LIAO Nihuan, HU Zhihong, MA Yingying, et al. Review of the short-term load forecasting methods of electric power system[J]. Power System Protection and Control, 2011, 39(1):147-152.
    [4] 邰能灵,侯志俭,李涛,等.基于小波分析的电力系统短期负荷预测方法[J].中国电机工程学报, 2003, 23(1):46-51. TAI Nengling, HOU Zhijian, LI Tao, et al. New principle based on wavelet transform for power system short-term load forecasting[J]. Proceedings of the CSEE, 2003, 23(1):46-51.
    [5] 曲正伟,张坤,王云静,等.基于PSO-OMP优化的WD-ASD超短期负荷预测[J].电工电能新技术,2017, 36(12),39-45. QU Zhengwei, ZHANG Kun, WANG Yunjing, et al. Short-term load forecasting based on WD-ASD optimized by PSO-OMP[J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(12),39-45.
    [6] 李如琦,褚金胜,王宗耀,等.小波分析及其在短期负荷预测中的应用[J].现代电力, 2009, 26(3):63-67. LI Ruqi, ZHU Jinsheng, WANG Zongyao, et al. Wavelet analysis and its use in short-term load forecasting[J]. Modern Electric Power, 2009, 26(3):63-67.
    [7] 孙英云,何光宇,翟海青,等.一种基于决策树技术的短期负荷预测算法[J].电工电能新技术, 2004, 23(3):55-58,75. SUN Yingyun, HE Guangyu, ZHAI Haiqing, et al. A short-term load forecasting method based on decision-tree approaches[J]. Advanced Technology of Electrical Engineering and Energy, 2004, 23(3):55-58,75.
    [8] 高亦凌,胡翼,辛洁晴,等.基于决策树主变最佳负荷预测研究[J].电网与清洁能源, 2014, 30(3):93-97. GAO Yiling, HU Yi, XIN Jieqing, et al. Study of transformer optimal load forecasting method based on decision tree[J]. Power System and Clean Energy, 2014, 30(3):93-97.
    [9] 康重庆,夏清,沈瑜,等.电力系统负荷预测的综合模型[J].清华大学学报(自然科学版), 1999, 39(1):9-12. KANG Chongqing, XIA Qing, SHEN Yu, et al. Integrated model of power system load forecasting[J]. Journal of Tsinghua university (Science and Technology), 1999, 39(1):9-12.
    [10] 程旭,康重庆,夏清,等.期负荷预测的综合模型[J].电力系统自动化, 2000, 24(9):42-44. CHENG Xu, KANG Chongqing, XIA Qing, et al. Integrated model of short-term load forecasting[J]. Automation of Electric Power Systems, 2000, 24(9):42-44.
    [11] 李春祥,牛东晓,孟丽敏,等.基于三指标量的中长期负荷预测综合模型[J].华东电力, 2008, 36(6):10-14. LI Chunxiang, NIU Dongxiao, MENG Limin, et al. Comprehensive models for mid-long term load forecast based on three target quantities[J]. East China Electric Power, 2008, 36(6):10-14.
    [12] 毛李帆,江岳春,龙瑞华,等.基于偏最小二乘回归分析的中长期电力负荷预测[J].电网技术, 2008(19):71-77. MAO Lifan, JIANG Yuechun, LONG Ruihua, et al. Medium-and long-term load forecasting based on partial least squares regression analysis[J]. Power System Technology, 2008(19):71-77.
    [13] 蔡金錠,王慧.非线性偏最小二乘回归在电力负荷预测中的应用[J].电工电能新技术, 2006(2):15-17,58. Cai Jinding, Wang Hui. Application of non-linear partial least square regression in electricity load prediction[J]. Advanced Technology of Electrical Engineering and Energy, 2006(2):15-17,58.
    [14] 季泽宇,袁越,邹文仲.改进偏最小二乘回归在电力负荷预测中的应用[J].电力需求侧管理, 2011, 13(1):10-14. JI Zeyu, YUAN Yue, ZOU Wenzhong. Application of improved partial least square regressive model in power load forecasting[J]. Power Demand Side Management, 2011, 13(1):10-14.
    [15] 秦浩庭,李群湛,刘燕,等.基于Monte Carlo的电铁电能质量预测方法[J].电力系统保护与控制, 2011, 39(13):64-70,77. QIN Haoting, LI Qunzhan, LIU Yan. Prediction of the power quality caused by electrified railways based on Monte Carlo[J]. Power System Protection and Control, 2011, 39(13):64-70,77.
    [16] 苏卫卫,马素霞,齐林海.基于ARIMA和神经网络的电能质量稳态指标预测[J].计算机技术与发展, 2014(3):163-167. SU Weiwei, MA Suxia, QI Linhai. Predicting of power quality steady indicator湳†敢浡灳潥睤攠牯浮攠湁瑒⁉慍湁搠⁡䉮偤†湮敥畵牲慡汬†湮敥瑴睷潯牲歫孛䩊嵝⸮†䅃摯癭慰湵捴敥摲⁔呥散捨桮湯潬汯潧杹礠⁡潮晤†䕄汥敶捥瑬牯楰捭慥汮⁴䔬渠朲椰渱攴攨爳椩渺朱‶愳渭搱‶䔷渮攼牢杲社ⱛ‱㈷そㄠ㘘⳯‬㎛㗊⠹㌬⦋㨐㘬㉉⴮㙒㡷⸵网数字化在线监测平台短期电能质量预测功能应用与分析[J].科技信息, 2012(34):690-691. LIU Ke, XUE Junru, SONG Rui, et al. Application and analysis of short-term power quality prediction of digital on-line monitoring platform for Qinghai power grid[J]. Science and Technology Information, 2012(34):690-691.
    [18] 张斌,庄池杰,胡军,等.结合降维技术的电力负荷曲线集成聚类算法[J].中国电机工程学报, 2015, 35(15):3741-3749. ZHANG Bin, ZHUANG Chijie, HU Jun, et al. Ensemble clustering algorithm combined with dimension reduction techniques for power load profiles[J]. Proceedings of the CSEE, 2015, 35(15):3741-3749.
    [19] FERY B J, DUECK D. Clustering by passing messages between data points[J]. Cience, 2007, 315(5814):972-976.
    [20] DUECK D, FREY B J. Non-metric affinity propagationfor unsupervised image categorization[C]//Proceedings of 11th International Conference on Computer Vision (IC-CV), 2007.
    [21] 徐卫东,聂一雄,周文文,等.基于反向传播神经网络的载流导体本体温度仿真计算[J].广东电力,2017,30(11):104-108. XU Weidong NIE Yixiong, ZHOU Wenwen, et al. Simulation calculation for current-carrying conductor temperature based on back propagation neural network[J]. Guangdong Electric Power,2017,30(11):104-108.
    [22] 刘波,张焰,陈煜.基于GA-改进BP神经网络算法在大电网短路电流预测中的应用[J].电工电能新技术, 2006, 25(4):43-46. LIU Bo, ZHANG Yan, CHEN Yu. Short-circuit current forecast application of big electrical network based on improved BP artificial neural network combined with genetic algorithm[J]. Advanced Technology of Electrical Engineering and Energy, 2006, 25(4):43-46.
    [23] 李路明,刘志明,张治国,等.基于FBG技术的抛物线与BP神经网络联合算法应用于架空线覆冰厚度监测的研究[J].智慧电力, 2017, 45(8):58-63. LI Luming,LIU Zhiming,ZHANG Zhiguo,et al. Overhead lines ice thickness monitoring based on FBG parabola method and BP neural network[J]. Smart Power, 2017, 45(8):58-63.
    [24] 安晨帆,杜志叶,李慧慧,等.基于组合赋权和BP神经网络的500 kV交流输电线路电磁环境评估方法研究[J].电工电能新技术, 2016, 35(3):62-68. AN Chenfan, DU Zhiye, LI Huihui, et al. Study of 500 kV of AC transmission line electromagnetic environment evaluation method based on combinatio��������������������������������������������������������������������������������������������������������������������
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王知芳,杨秀,潘爱强.一种新的电压偏差预测方法[J].电力工程技术,2018,37(5):26-31

复制
分享
文章指标
  • 点击次数:1637
  • 下载次数: 2173
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2018-05-09
  • 最后修改日期:2018-06-27
  • 录用日期:2018-07-05
  • 在线发布日期: 2018-09-28
文章二维码