基于增广状态估计的混合不良数据诊断与参数辨识
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Hybrid bad-data detection and parameter identification based on augmented state estimation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电网同时存在遥测坏数据和参数错误时,由于坏数据会影响参数辨识结果,全网参数辨识和估计方法很难保证结果的准确性。文中提出一种基于增广状态估计的混合不良数据诊断与参数辨识方法,先通过残差平衡度判断不良数据是遥测坏数据还是错误参数,将遥测坏数据直接剔除;然后,通过分区方法将多个潜在的不良参数尽可能分开在不同的局部区域,以减弱不良数据之间的相互影响;最后,采用分区增广状态估计方法修正不良参数。算例结果表明,该方法能有效区分坏数据和错误参数,且分区参数辨识能避免不良数据之间相互影响,从而提高了可疑参数辨识的精度。

    Abstract:

    With presence of hybrid bad telemetry data and error parameter in power system, the validity of parameter identification and estimation methods of whole network cannot be guaranteed due to the fact that bad data will affect the parameter identification accuracy. It presents a detection and identification approach of bad-data based on augmented state estimation. First of all, the bad data are estimated whether they are bad telemetry data or parameters with error according to the residual balance degree. After deleting bad telemetry data, parameters with errors are kept within a certain area using node partition and then are modified according to augmented state estimation. The example results show that the proposed method can identify the bad telemetry data and parameters with error effectively, and interaction between the bad data can be avoid through parameter partition, so that the estimation accuracy of the suspicious parameters can be improved.

    参考文献
    相似文献
    引证文献
引用本文

陆东生,马龙鹏.基于增广状态估计的混合不良数据诊断与参数辨识[J].电力工程技术,2019,38(2):99-104

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-11-15
  • 最后修改日期:2018-12-22
  • 录用日期:2018-08-07
  • 在线发布日期: 2019-03-28
  • 出版日期: 2019-03-28
文章二维码