基于PSO-LSSVM的高压电力电缆接头温度预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Temperature prediction of power cable joint based on PSO-LSSVM predict model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高压电力电缆接头温度是反映电缆运行状况的重要指标,对接头温度进行精确预测可提高电缆安全运行水平。采用最小二乘支持向量机建立适用于电缆接头的温度预测模型,并给出了预测方法的具体步骤。模型以电缆接头的历史温度、环境温度、湿度和线芯/护层电流比为输入样本,电缆接头的表面温度为输出。为了提高预测精度,采用粒子群优化算法对模型的标准化参数和正则化参数进行动态寻优。以上海某110 kV电缆接头为例进行预测,结果表明,提出的方法能较好地预测电缆接头温度,预测精度高,为电缆温度监测和预警系统提供可靠的判断依据。

    Abstract:

    The temperature of the high voltage power cable can reflect the operation status of the cable, and the prediction of the joint temperature can improve the safe operation level of the cable. Using the least squares support vector machine to establish the temperature prediction model for cable joint. Cable joint history temperature, environment temperature, environment humidity and wire core/sheath current ratio can be adapted as the input samples, the surface temperature of the cable joint for the output. Particle swarm optimization algorithm is adopted to dynamically optimize the normalized parameter and regularization parameter to improve the accuracy of prediction, and the concrete steps of the prediction method are given. A 110 kV cable joint in Shanghai is used as an example. The results prove that method can predict the temperature of cable joint with high prediction accuracy. It can also provide a reliable basis for cable temperature detection and early warning system.

    参考文献
    相似文献
    引证文献
引用本文

何邦乐,黄勇,叶頲,徐浩森.基于PSO-LSSVM的高压电力电缆接头温度预测[J].电力工程技术,2019,38(1):31-35

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-08-20
  • 最后修改日期:2018-10-15
  • 录用日期:2018-05-15
  • 在线发布日期: 2019-01-28
  • 出版日期: 2019-01-28
文章二维码