基于差分粒子群算法的变电站选址定容规划
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


The Optimization of Substation Locating and Sizing Based on DEPSO Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对标准粒子群算法(particle swarm optimization,PSO)易陷入局部最优,差分进化算法(differential evolution,DE)后期收敛速度慢的缺点,提出差分粒子群算法(differential particle swarm optimization,DEPSO)将二者进行混合优化,提高群体的收敛速度和全局寻优能力,并应用于配电网变电站规划。在变电站选址数学模型中结合Voronoi图来确定变电站供电范围和规划容量,继而校验变电站实际负载率,简化计算过程,提高搜索效率。通过某市城区远期规划实例验证得知该算法正确有效,可以满足城区配电网的规划要求。

    Abstract:

    Aiming at the shortcomings that the traditional standard particle swarm optimization (PSO) tends to fall into the local optimum and the differential evolution algorithm (DE) has a slow convergence rate in the later stage,a differential particle swarm optimization algorithm (DEPSO) is proposed to optimize both the convergence speed and the global Optimum ability,and applied to distribution network substation planning.Through the combination of Voronoi diagram in the mathematical model of substation site selection to determine the substation power supply range and planning capacity,and then verify the substation actual load rate,simplify calculations and improve search efficiency.The long-term planning example of a city city verified that the algorithm is correct and effective,which can meet the planning requirements of urban distribution network.

    参考文献
    相似文献
    引证文献
引用本文

陈浩,王健.基于差分粒子群算法的变电站选址定容规划[J].电力工程技术,2018,37(3):118-122

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-12-20
  • 最后修改日期:2018-01-29
  • 录用日期:2018-03-20
  • 在线发布日期: 2018-05-29
  • 出版日期: 2018-05-28
文章二维码